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Abstract— Mapping is crucial for spatial reasoning, planning
and robot navigation. Existing approaches range from metric,
which require precise geometry-based optimization, to purely
topological, where image-as-node based graphs lack explicit
object-level reasoning and interconnectivity. In this paper, we
propose a novel topological representation of an environment
based on image segments, which are semantically meaningful
and open-vocabulary queryable, conferring several advantages
over previous works based on pixel-level features. Unlike
3D scene graphs, we create a purely topological graph with
segments as nodes, where edges are formed by a) associating
segment-level descriptors between pairs of consecutive images
and b) connecting neighboring segments within an image using
their pixel centroids. This unveils a continuous sense of a
place, defined by inter-image persistence of segments along with
their intra-image neighbours. It further enables us to represent
and update segment-level descriptors through neighborhood
aggregation using graph convolution layers, which improves
robot localization based on segment-level retrieval. Using real-
world data, we show how our proposed map representation can
be used to i) generate navigation plans in the form of hops over
segments and ii) search for target objects using natural language
queries describing spatial relations of objects. Furthermore,
we quantitatively analyze data association at the segment
level, which underpins inter-image connectivity during mapping
and segment-level localization when revisiting the same place.
Finally, we show preliminary trials on segment-level ‘hopping’
based zero-shot real-world navigation. Project page with sup-
plementary details: oravus.github.io/RoboHop/.

I. INTRODUCTION

A map of an environment represents spatial understanding

which an embodied agent can use to operate in that envi-

ronment. This manifests in existing approaches in multiple

ways, e.g., 3D metric maps used for precise operations [1],

[2], implicit maps as a robot’s memory [3], hierarchical

3DSGs based explicit memory [4], and topological maps

with image-level connectivity for robot navigation [5]–[8].

Metric maps enable direct spatial reasoning, e.g., 6-DoF

poses of a driverless vehicle, or measuring distances to

or between physical entities in the environment. Even for

purely topological representations, some spatial reasoning

can be encoded through image-level connectivity, e.g., recent

advances in bio-inspired topological navigation [5] and the

follow-up work [6], [9], [10]. However, such topological

representations discretized by images are limited in their
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Segment-level Plan to Navigate from Cardboard Box to Ladder.

Fig. 1. We present a topological, segment-based map representation which
can generate navigation plans from open-vocabulary queries in the form of
‘hops’ over segments to reach the goal, without needing a learned policy.

semantic expressivity as the physical entities in the world

are never explicitly represented or associated across images.

In this paper, we propose a novel topological represen-

tation of an environment based on image segments. Unlike

the use of pixel-level features [11], the segments we use

are semantically meaningful and open-vocabulary queryable.

Our segments-based approach is enabled by recent advances

in image segmentation, i.e., SAM [12] and vision-language

coupling, i.e., CLIP [13]. We create a topological graph

using image segments as nodes, with edges formed by a)

associating image segments within a temporal window of

image observations and b) connecting neighboring segments

within an image using their pixel centroids.

We show how our map representation can be used to create

intra-image hops over inter-image segment tracks to generate

navigation plans and actions, as shown in Figure 1. Unlike

existing image-level topological navigation methods [5]–[7],

the use of segments directly enables finer-grained plan gener-

ation for object-goal navigation. Furthermore, we show how

our proposed segment-level inter- and intra-image connectiv-

ity unveils a continuous sense of a ‘place’ [14], represented

by a segment descriptor and its neighboring nodes. These

segment descriptors are updated, enhanced and augmented

with their neighbours via graph convolution. This rich de-

scriptor enables accurate robot localization via segment-level

retrieval.

In summary, the contributions of this paper are as fol-

lows: a) We introduce a novel topological representation

of environments, utilizing image segments as nodes; this

enables semantically rich and open-vocabulary queryable

mapping. b) We establish a novel mechanism for intra- and

inter-image connectivity based on segment-level descriptors

and pixel centroids. c) We develop a unique method for

ar
X

iv
:2

4
0
5
.0

5
7
9
2
v
1
  
[c

s.
R

O
] 

 9
 M

ay
 2

0
2
4

oravus.github.io/RoboHop/


generating semantically interpretable, segment-level plans for

navigation, leveraging text-based queries for defining object-

level source and target nodes. d) We demonstrate the utility

of our segment-level mapping, planning, and localization

through preliminary trials of zero-shot real-world navigation.

II. RELATED WORK

Mapping: Mapping techniques fall into three main cat-

egories: 3D metric maps [1], [15]–[18], purely topological

maps [5], [19], and hybrid maps which often combine

semantics with ‘topometric’ information, e.g., 3D Scene

Graphs [20]–[23]. 3D approaches like ORB-SLAM [15],

LSD-SLAM [16], and PTAM [24] excel in accuracy but

suffer from computational overhead and a lack of semantics,

limiting their application in high-level task planning. Hybrid

methods such as SLAM++ [25] and QuadricSLAM [26]

attempt to address this by incorporating semantic information

but remain computationally intensive. Purely topological

methods like FAB-MAP [19] and SPTM [5] simplify the

computational load by using graphs to represent places and

paths but lack explicit object-level connectivity.

Navigation: Semantic and spatial reasoning is crucial for

object-goal navigation [27], where a robot navigates toward

a specified object represented through an image or a natural

language instruction. Although some works have advocated

for end-to-end learning through reinforcement [28]–[30]

or imitation [31], [32], these approaches often necessitate

large training datasets that are impractical in real-world

scenarios. A less data-hungry alternative is to segregate the

task into the classical three-step process: mapping, planning

and then acting. Map-based strategies have exhibited supe-

rior modularity, scalability and interpretability, thus being

suitable for real-world applications [33]. LM-Nav [6] and

TGSM [34] build on SPTM [5] to create topological graph

representations, coupled with image-based CLIP features or

closed-set object detections associated with each location.

These representations can then be used to generate sub-goals

which a robot can navigate towards with an image-based,

low-level control policy. Learning such policies requires

both environment- and embodiment-specific training data,

limiting the generality of the approach. More recent work

in this direction is aimed at creating foundation models

for navigation [35]. However, these topological maps with

images-as-nodes lack explicit object-level reasoning, unless

combined with 3D input [34], [36], [37]. In our work, we

present a novel topological representation with ‘segments-

as-nodes’, which provides the robot with segment tracks of

persistent entities, where each node in the graph is connected

to the next via segment matching across images. As segments

disappear from parts of an image, other segments match

to the next image allowing for a continuous hopping over

a stream of nodes. Such a representation enables a robot

to progress towards a goal by “segment servoing” sub-

goals, which relaxes the need for embodiment specific and

sample-inefficient learned policies. Moreover, unlike existing

image-based servoing [38]–[46] and visual teach-and-repeat

methods [47]–[55] for navigation, our map representation is

purely topological and based on segments [12] which are

semantically meaningful and open-vocabulary queryable.

III. ROBOHOP

Figure 2 illustrates our proposed pipeline for RoboHop and

its key modules: mapping, localization, planning, navigation

and open-vocabulary natural language querying.

A. Mapping

We define a map of an environment as a topological graph

G = (N , E), where N and E represent the nodes and edges.

For a given sequence of images It ∈ I , we first obtain image

segmentation from a method such as SAM [12]. The zero-

shot capability of these recent foundation models is important

because we do not want to tie our topological representation

to a closed-world of known/recognised objects. Furthermore,

these methods naturally support the link to richer descriptors

and language models.

For each segment in an image, we define a node ni

in G with attributes (xi, yi,Mi, hl
i). (xi, yi) represent the

pixel centroid of the binary mask Mi, h0
i represents the

l2-normalized segment descriptor obtained by aggregating

pixel-level deep features (using DINO [56] or DINOv2 [57])

corresponding to Mi, and l ∈ [0, lmax] is the layer index for

descriptor aggregation in the graph (as explained later). As

a semantic preprocessing step, we also compute CLIP [13]

descriptors for individual segments (similar to [58]) and

exclude the segments with high (image-language) similarity

to semantic labels for ‘stuff’ (i.e., floor, ceiling, and wall).

Edges: An edge eij is defined as either of the two edge

types: a) intra-image edges, which are defined through the

centroids of segments (xt
i, y

t
i) within each image It using

Delaunay Triangulation and b) inter-image edges, which are

defined through segment-level data association, i.e., vector

dot product s
t,t′

ij = h
t
i · h

t′

j between node descriptors of an

image pair (It, It
′

) as follows:

Et,t′ = {(nt
i, n

t′

j ) |n
t′

j = argmax
k

s
t,t′

ik ∧ s
t,t′

ij > θ} (1)

where t′ − t ∈ [1, 3] and an edge between a pair of segment

nodes (nt
i, n

t′

j ) only exists if nt′

j is the closest match for nt
i

and their similarity is greater than a threshold θ. If no edge

is found for any segment in a particular image, we retain

a single edge to its next image using the node pair with

the highest similarity value. This ensures that our map is a

connected graph. We do not define loop closure edges, which

can be used to further enhance the map for shortcuts.

Node Descriptor & Aggregation: The nodes in our map

are based on segments which represent semantically mean-

ingful entities in the environment. By defining a segment

descriptor for each node based on robust features such as

DINOv2 [57] (e.g., see AnyLoc [59]), these segments can

be considered as unique landmarks. Thus, from a ‘place

descriptor’ and localization perspective, these segments do

not necessarily need to be interpretable as “objects”. How-

ever, a standalone image segment descriptor hi might suffer

from perceptual aliasing during the localizaton phase. To
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Fig. 2. Illustration of our overall pipeline from image segments to mapping, language querying, and planning.

alleviate this, we add more place context to a node from

its neighborhood by aggregating descriptors through multi-

layered graph convolutions. This is achieved by simplifying

the standard graph convolution network [60] to compute

average node descriptors as below:

H
(l+1) = D̃

−1
ÃH

(l)
I (2)

where H is the node descriptor matrix (composed of h), A

is the adjacency matrix for G, Ã = A + I is the adjacency

matrix with self-loops, I is the identity matrix and D̃ is

the degree matrix for Ã. Here, aggregation over successive

layers influences a node descriptor through the neighbors of

its neighbors, thus gradually expanding the ‘place’ context

of any given node. We perform this aggregation on both the

map and the query image using lmax = 2.

B. Localization

In our proposed map with segments-as-nodes, we define

localization at the node level through node retrieval. For each

of the segment descriptors in the query image, we match

it with all the segment nodes in the map and consider it

localized if its similarity is greater than a threshold. Although

more sophisticated retrieval methods are available, we found

that the richness of the descriptor, together with a simple

threshold, provided high-quality retrieval. These segment

descriptors are informed by their neighbours (see Eq. 2),

which improves their localization ability due to the added

‘place’ context.

C. Global Planning

Through the interconnectivity of segments, we aim to

obtain navigation plans from our map in the form of segment

tracks with continuous hopping from one track to another,

as these segments exit and enter the field of view.

1) Edge Weighting: Given the source and destination

segment nodes in our proposed map, we generate a plan

using Dijkstra algorithm, where the edge weights are set to

0 and 1 respectively for inter- and intra-image edges. This

specific design choice is what encourages the shortest path

search to always prefer edge connections across images.

It leads to the emergence of segment tracks of persistent

entities that a robot can use as navigation sub-goals, where

continuous hopping across the sub-goals of the navigation

plan leads to the final destination. We use these edge weights

only for generating navigation plans, not for node descriptor

aggregation.

2) Planning Strategy: There exist many different meth-

ods [5], [6], [9], [10], [36] for local motion control that

operate on the pair of current observation and sub-goal to

generate actions. Since the exact form of input to such

controllers, as well as the exact end-task specifications can

potentially vary [9], [27], [61], [62], we define two variants

of segment-level plan generation depending on how the

intra-image edges are connected. The default mode is to

use Delaunay Triangulation (as described in Section III-A),

which we refer to as Intra-DT for planning purposes. With

intra-image edge weights as 1, this mode will only ever

traverse multiple intra-image neighboring segments when it

is able to reach a node that has long inter-image tracks,
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Fig. 3. Target Object Search Based on Relational Natural Language Queries: The LLM parses a relational query into a reference and target node
textual description suitable for CLIP to process into language feature vectors. We then retrieve top-3 candidate target and reference nodes from the map
by respectively matching the CLIP language feature vector with the CLIP vision feature vector of each node. Within the topological graph of our map,
Dijkstra’s algorithm finally selects the object goal for navigation based on the shortest path between the candidate target and reference nodes.

thus saving the overall path cost. This type of planning can

be directly useful for ‘smooth’ robot control as there are

no intra-image ‘long hops’. We also consider an alternative

mode of planning, dubbed Intra-All, where we create a

complete subgraph using all the segments within a single

image, thus allowing long intra-image hops. This mode of

planning can be useful when there is a large number of

objects in a single image (e.g., a shelf full of items) which

will otherwise incur a high cost for moving from one corner

of the image to another. In Section IV-B, we show how these

different planning strategies lead to variations in the choice

of persistent segment tracks.

D. Navigation

We propose two object-level control methods: discrete and

continuous, as detailed below.

1) Discrete Control Mode: For each node in the plan, we

match its segment descriptor with all the segment descriptors

in the current robot observation (query). The similarity value

of the best match determines whether the robot is in the ‘lost

state’ (i.e., unable to localize with respect to the reference

node, thus explore randomly) or ‘track state’. For the latter

case, we use the horizontal pixel offset of the best matching

query segment from the image center to drive the robot

towards that object. We use the segment size ratio between

the tracked object and its reference to determine a ‘hop state’.

This state implies that the robot has successfully tracked and

reached to the reference sub-goal, and can hop on to the next

node in the plan and repeat the process until it reaches the

last node in the plan.

2) Continuous Control Mode: In this mode, we use all

the segments of the current observation to obtain a control

signal. We match all the query segments against all the

segments in the local submap (obtained as a set of images

within a temporal window of the localized map image).

The best matched submap segment corresponding to each

query segment is used as a source node to compute path

length. These path lengths are used to compute a weighted

average of the horizontal pixel offset, thus guiding the robot

towards the objects which are closer to the goal. This process

is repeated until the minimum path length across matched

submap segments reduces to 0. An example of this mode of

navigation is shown in Figure 8.

E. Querying the Map with Open Vocabulary

We demonstrate one potential use case of our map rep-

resentation for object-goal navigation based on object-level

relational queries. We associate each node in our map with a

CLIP descriptor of the corresponding image segment, thereby

offering an interface for open-vocabulary, natural language



TABLE I

ACCURACY OF SEGMENT-LEVEL OBJECT RECOGNITION.

CLIP [13] DINO [56]

Object Instance Recognition 35.11% 56.43%
Object Category Recognition 62.87% 79.04%

queries entailing vague and complex task instructions. More

importantly, we introduce an algorithm (see Figure 3) that en-

ables generating path plans from complex relational queries,

e.g., “locate the closest available seat to the Merlo’s coffee

shop”, which exploits the map’s ability to capture both intra-

and inter-image spatial relationships not present in existing

methods. The key here is to identify the target (“chairs

or benches”) and the reference (to that target, i.e., “the

Merlo coffee shop”) nodes in the scene based on the re-

lational query. We do this by utilising an LLM appropriately

prompted to parse the query and identify textual descriptions

of these nodes-of-interest. This does not require the LLM to

be aware of the map. Across all experiments in the work,

we leverage GPT-4 as the underlying LLM. The parsed

text descriptions of reference and target are processed into

language feature vectors by CLIP’s text encoder. We then

retrieve top-3 candidate target and reference nodes from the

map by respectively matching the CLIP language feature

vector with the CLIP vision feature vector of each node.

Within our topological graph, Dijkstra’s algorithm finally

selects the object goal for navigation based on the shortest

path between the candidate target and reference nodes.

IV. EXPERIMENTS AND RESULTS

This section details our experimental design and results,

aimed at validating the proposed topological map representa-

tion for segment-level topological localization, planning for

‘hopping’ based navigation, and object-level control1.

A. Segment-Level Data Association

As the quality of segment-level data association lies at

the heart of the robustness and integrity of our mapping, as

well as for the plans made within these maps, we conduct

experiments to evaluate the efficacy of the data association

component of our pipeline. Our method is simple but backed

by rich descriptors based on local and broader contextual

information. We consider two kinds of experiments on real-

world data, which are outlined in more detail below. In

the first set of experiments, the ground truth segments and

instances are available indoors, such as GibsonEnv [63], This

availability allows us to perform quantitative evaluation of

segment-level association. However, in the second set of

experiments, the lack of similar ground truth data outdoors

means that we must resort to evaluating a downstream task –

localisation – to assess its performance based on our segment

correspondences.

1Additional implementation details for image preprocessing and models
(i.e., SAM [12], DINO [56]), and CLIP [13]) are in the supplementary.
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Fig. 4. Object Instance Recognition in GibsonEnv [63]: The rows show
segment masks (in green) for the query, DINO match, and CLIP match
respectively. Symbols (✓/×) adjacent to images indicate success or failure in
association. The final column illustrates category-level recognition success
despite both methods failing at the instance level (multiple chairs in close
proximity).

1) Object Instance and Category Recognition: In this

experiment, to demonstrate the efficacy of our segment-

level association, we make use of ground truth detections

and segmentation of instances in an indoor environment:

GibsonEnv [63]. In particular, we show here examples from

the house Klickitat as it is representative of the diverse

range of environments in the dataset. To align with the

standard input requirements of SAM, and to “simulate” a

forward-facing camera, we extract perspective images with a

field-of-view of 120 degrees from the real-world GibsonEnv

panoramas and treat these as the raw images. Next, we obtain

class-agnostic SAM segments from each image and assign

these segments to their corresponding ground truth object

instances in each image using Intersection over Union (IoU),

with a minimum threshold of 0.2. To ensure data quality,

we consistently exclude segments with sizes comprising less

than 0.2% of the overall image. Finally, for this experiment,

we have a total of 544 distinct views (SAM segments) of

68 unique objects from 18 diverse categories. We assess the

quality of descriptors (such as DINO [56] and CLIP [13]) for

segment-level association by evaluating the (top-1) accuracy

of our descriptor matching with the correct object. As

explained in Section III-A, the matches are selected based

on the nearest neighbour criterion over descriptors.

Table I shows a comparative analysis of different de-

scriptors for object instance and category recognition from

diverse viewpoints. It is apparent that DINO achieves better

results than CLIP in this context, which can be attributed

to differences in how they are supervised and their training

objectives. While CLIP performs reasonably well in pre-

dicting categories, DINO features exhibit greater distinctive-

ness in both instance-level and category-level recognition.

In Figure 4, we show some of the object instance and

category recognition outcomes, featuring both successful and

unsuccessful cases.

2) Segment-level Topological Localization: Since

segment- or object instance-level ground truth associations

are not always available, we also conduct experiments to

measure the quality of both our map and the localization

ability through a segment-level topological localization task.



Fig. 5. Node-level localization across varying number of graph convolu-
tional layers (y-axis) and incremental inclusion of inter-image edges based
on a similarity threshold (x-axis) for DINO (left) and DINOv2 (right).

For this purpose, we use a popular visual place recognition

dataset, GPCampus [64], which comprises three traverses

of a University Campus: two day and one night time.

We only use its Day Left and Day Right traverse as the

reference map and query set respectively. We coarsely

evaluate segment-level association by first tagging both the

query segment and its matched segment to their respective

image indices, and then using these associated images to

compute Recall@1 based on a localization radius of 5
frames. Figure 5 shows that segment-level recognition for

both DINO (left) and DINOv2 (right) improves with an

increasing number of graph convolution layers as well as

incremental inclusion of inter-image edges. The former only

considers segments from within an image while the latter

resembles sequential descriptor-type place recognition [65].

B. Planning

We show qualitative results of our full pipeline using two

complementary datasets. a) PanoContext-Living, which refers

to one of the living room panoramic images (2cfc836333)

from the original PanoContext dataset [66], [67]. We split this

pano image uniformly along the horizontal axis to create

multiple frames, with a horizontal wraparound. Thus, this

dataset represents a pure rotation-based robot traversal. We

explicitly compute data association between the last and the

first frame to close the loop. b) GPCampus-DayLeft [64],

which is a forward-moving robot traverse. For both these

datasets, we first construct the segment-level map, then query

the resultant graph with text to identify source and target

node based on CLIP similarity, and then finally generate a

plan between these pairs of nodes.

1) PanoContext-Living: Figure 6 shows multiple plans

using a variety of text queries for both types of planning

strategies: Intra-All and Intra-DT. Each of the selected seg-

ments and their connectivity based on the shortest path is

shown, with path edges wrapped around the pano image.

The subsampled frames from the pano are shown as dashed

boxes in color corresponding to the segment belonging to

that frame.

Intra-All: For Intra-All planning on this pure rotation

setting, the inferred shortest path can be coarsely related

to the horizontal offset (allowing wraparound) between the

pixel centroids of the source and the target segment. In

Figure 6(a) (Intra-All), for text queries Window (source)

and Sofa (target), the shortest path is correctly found

from the wraparound frames via Chair. In examples (b)

Intra-All Intra-DT

(a) Window to Sofa

(b) Chair with wheels to Television

(c) Chair to Television

Fig. 6. Segment-level plans using text queries for source and target,
showing shortest paths for panoramic ‘pure rotation’.
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Fig. 7. Variations in segment-level navigation plans (one per column)
depending on how the edges are defined and weighted for path search.

and (c), we extract paths to Television from Chair

with wheels and Chair. Indicating imperfections of the

SAM+CLIP combination, Chair finds the best match with

one of its partial visual observation, in contrast to Chair

with wheels which matches correctly with the full chair.

Nevertheless, both the paths in (b) and (c) are practically

similar in terms of the number of yaw steps needed to reach

the target.

Intra-DT: For the Intra-DT plans, in all the cases, paths

span multiple objects (more than the Intra-All), inducing a

smoother transition from source to target. In examples (b)

and (c), the paths are composed of the carpet nodes – this

consistent choice is justified from an almost ‘omnipresence’

of carpet throughout the scene, as it had not been filtered out

in our preprocessing of common segments. Thus, in both the

cases, intra-image hops try to land on to the carpet node to

reach the target with the least inferred cost.

2) GPCampus-DayLeft: In Figure 7, we show the

segment-level plan for the forward-moving robot traverse,

with Z block and Dustbin as the source and target text

queries. Here, we only show the planned segments close to

the source node, please refer to the supplementary video for

the full plan visualization. The first two rows correspond

to the Intra-DT and Intra-All planning, and the last row

corresponds to a naive baseline where an inter-image edge

for each of the segments is included without any similarity

thresholding (see Eq. 1). This implies that during planning

there always exists a 0 cost inter-image edge for all the

segments, thus never needing to traverse an intra-image edge.

In the Intra-DT row, the first 4 frames (columns) show

an intra-image traversal to reach the door which has a



Fig. 8. Successful navigation example in Habitat using continuous control
mode to reach the green painting goal in the rightmost image. The horizontal
pixel offset (depicted through the length and direction of arrow) for each
of the matched query segments is weighted by the path length to the
goal (depicted through color with length decreasing from red to green),
to generate an aggregated angular velocity.

persistent track over multiple frames. In the Intra-All row, it

can be observed that a single intra-image hop directly leads to

a persistent track of a closet. In the DA-All row, the paths

are formed based on rapid hopping, as soon as the current

tracked object goes out of the field-of-view, regardless of any

persistent segment tracks.

C. Navigation

We conducted preliminary trials of zero-shot robot nav-

igation using segment-level mapping and planning, both in

real world and simulation. We initialize the robot pose such

that the first reference map node (sub-goal) of the plan is

in its field of view. We use PID controller to convert the

horizontal pixel offset into yaw velocity, while the forward

translation is always fixed to a small velocity. Figure 8 shows

an example of continuous control mode in Habitat simula-

tor [68]. We defined an initial trajectory in its skokloster

environment by sampling multiple farthest navigable points.

At inference, the robot was then tasked to go from one of the

random points along the trajectory to another. Our trials (in

supplementary video) show that our proposed representation,

powered by the foundation models SAM and DINO, enables

embodiment-agnostic control strategies for zero-shot goal-

directed navigation without needing to train data-hungry

task-specific policies.

V. LIMITATIONS

While our approach exhibits notable strengths in segment-

level topological mapping and planning for spatial reasoning

and navigation, it also has multiple limitations worth dis-

cussing. a) The efficacy of our approach is strongly tied to

the quality of segment-level data association. We observed

failures in navigation trials due to mismatches caused by

repetitive structures. We found LightGlue [69] to perform

better than DINOv2 for segment association in highly aliased

environments (e.g., paintings and chairs in Figure 8). b) Our

method in its current form cannot deal with dynamic changes

in the environment. c) Considering ‘things’ vs ‘stuff’, despite

the convenience of semantic preprocessing enabled by the

combination of SAM and CLIP to remove ‘stuff’, some

segments from ground or walls can still persist. d) In our

navigation experiments, we found that the lack of repeatable

segmentation during the revisits led to incorrect area ratio,

thus affecting the forward/backward motion and ‘hop state’

decision – this could though be addressed through depth

information (used solely for this purpose, while still using the

topological map). e) Finally, we note that handling relational

queries through LLMs is prone to failures in cases where

metric information is necessary to deem two objects being

next to each other.

VI. CONCLUSION AND FUTURE WORK

This paper presented a novel topological map representa-

tion centred on image segments, which serve as semantically-

rich, open-vocabulary queryable nodes within a topolog-

ical graph. The method uses an integrated strategy in-

volving segment-level data association and segment-level

planning for object-goal navigation. Our preliminary trials

on segment-level hopping based navigation indicate that

powerful foundation models like SAM (for segmentation)

and DINOv2 (for data association) can enable zero-shot

navigation without requiring 3D maps, image poses or a

learnt policy.

There are several promising directions for future work.

One avenue involves incorporating visual servoing-based

navigation to provide real-time visual feedback, which could

improve the system’s navigation capabilities and robustness.

Furthermore, while our current approach predominantly re-

lies on topological mapping, integrating local node- and

edge-level metric information can introduce a higher degree

of granularity and precision, thereby enhancing the system’s

navigation capabilities. Finally, semantically labelling each

node could facilitate the construction of 3D scene graph

representations suitable for higher-level task planning [70].
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