
HARDNAV - Simulator for Benchmarking Robust Navigation and Place

Recognition in Large, Confusing and Highly Dynamic Environments

Tomáš Musil , Matěj Petrlı́k , Martin Saska

Abstract— We present a novel simulator called HARDNAV
for developing and benchmarking robust vision-based au-
tonomous navigation and place recognition. The simulator
is designed to effortlessly simulate challenging scenarios and
environmental features for single-mission autonomy, such as
dynamic objects and lights, featureless areas or sensor cor-
ruption, and for long-term autonomy, such as visibility and
topology changes and large-scale unstructured environments.
Additionally, we propose replicable benchmarks of active place
recognition, and of multi-session navigation, specifically for
a kidnapped robot return home mission type, and discuss
other challenging benchmarks possible in our simulator. We
opensource the code for the simulator and provide scripts and
tutorials to easily design multi-session experiments. We hope the
simulator will help the robotics and AI community to develop
truly robust spatial intelligence methods.

Code— https://github.com/MrTomzor/navigation unity testbed

I. INTRODUCTION

Autonomous navigation, place recognition and SLAM are

aspects of an emerging more general field - spatial/embodied

artificial intelligence. These aspects are essential for the de-

velopment of any kind of embodied agents that can perform

complex and meaningful tasks in the physical world. They

have been heavily researched and reviewed in the last several

decades [1]–[3], but the existing methods are often still not

robust enough for the real world.

For example most state-of-the-art methods, especially for

SLAM, still make very strong and limiting assumptions

about the world — that it is mostly static, and that global

metric localization is achievable at all times. Some SLAM

algorithms try to relax the metric localization requirements,

such as [4], but those rely on purely image-based appearance

matching for place recognition, which can fail for example

under severe illumination/visibility changes.

Navigation also suffers from these assumptions, and even

learning-based methods often incorporate a perfect position

sensor into its inputs [5]. There are some methods that

attempt to break free of this assumption [6], but these are

often tailored to specific edge cases and are not a general

solution.

In contrast, living organisms are able to navigate changing,

ambiguous, large-scale environments with ease. Despite the

discovery of grid cells [7], which seem to form an internal

metric system, humans and animals can navigate environ-

ments where metric localization is unattainable (e.g., navi-

gating abstract conceptual spaces such as a social hierarchy

Authors are with the Department of Cybernetics, Faculty of Electrical
Engineering, Czech Technical University in Prague, 166 36 Prague 6,
{musilto8|matej.petrlik|martin.saska}@fel.cvut.cz

Digital Object Identifier (DOI): see top of this page.

Fig. 1: A viewpoint from the Forest1 environment featured

in HARDNAV seen under heavy appearance change between

sessions — color and lighting angle variation and fog. All

of these settings are toggleable per session by a service call

without having to edit world files.

[8]). They can also quickly change their cognitive maps

in case of drastic structural changes in the environment to

adapt without needing hundreds of hours of retraining time

[8] [9]. There is, therefore, still many open questions and

challenges in spatial intelligence to answer before spatial

artificial intelligence methods are anywhere near the level

of robustness and efficiency of living organisms.

In this paper, we present a simulator specifically designed

to simulate the difficult situations and environments in which

current spatial intelligence methods fail, such as illumination

and visibility changes, self-similar unstructured large-scale

environments, featureless areas, drastic environment changes

between sessions and high numbers of dynamic objects

and lighting effects. We hope this will help researchers

quickly test their methods against problems such as wrong

loop closures, odometry/scale drift, memory capacity and

tractability problems.

Additionally, we propose a specific replicable bench-

mark for the task of autonomous navigation that uses the

https://orcid.org/0000-0002-9421-6544
https://orcid.org/0000-0002-5337-9558
https://orcid.org/0000-0001-7106-3816
https://github.com/MrTomzor/navigation_unity_testbed
mailto:musilto8@fel.cvut.cz
mailto:matej.petrlik@fel.cvut.cz
mailto:martin.saska@fel.cvut.cz

HARDNAV simulator and discuss additional possible uses

for the simulator, such as synthetic dataset generation for

heavy session change.

Fig. 2: An example of perceptual aliasing in the Forest1

environment taken during constant lighting conditions - these

two areas of the map are visually very similar, differing

mainly in the outline of the mountains and in the distribution

of palm/alder trees on the other bank, but lie in opposite

corners of the map.

II. RELATED WORKS

A. Simulators

Currently, there is a vast amount of simulators for robotics

applications that feature different motion and sensor models

in different 3D environments, such as Flightmare [10] which

is tailored mainly for development of control and planning

methods for quadrotors and has a modular structure with

a high-fidelity physics engine, CARLA [11] which features

large-scale road traffic and weather change and [12] for

quadrotor simulation with the high-fidelity NVIDIA PhysX

engine.

In the machine learning community, there are also many

simulators available for embodied AI aresearch - for example

Habitat [13] and RoboTHOR [14]. These mostly focus on the

topic of ”vision-language navigation” in which deep learning

models are trained to perform tasks specified by humans in

natural language [15].

The majority of these simulators still feature only static,

small-scale, structured scenes, with the major exception be-

ing CARLA [11], which is however designed for cars moving

in the highly structured and navigable domain of roads. In

contrast, HARDNAV does not offer high-fidelity dynamics

nor super-realistic rendering because it is focused on offering

large-scale, unstructured, confusing, dynamic environments

and the ability to easily modify the configuration of the world

and design multi-session tasks.

B. Benchmarks

Perhaps the most impactful recent benchmark of navi-

gation capabilities was the Darpa SubT Challenge [16]. In

the challenge, robot teams had to (semi-autonomusly in the

systems track, and fully autonomously in the virtual track)

explore unstructured subterranean environments, detect and

determine precise metric location of pre-defined objects, with

each team having a limited amount of guesses and receiving

Fig. 3: A showcase of a part of the ScifiBase1 world, with

2 types of robots that wander around the area randomly

using Unity’s built-in navmesh functionalities, multiple metal

containers that can be randomized at the start of each session,

and light rain with fog and clouds

one point per correct object report, meaning correct class

label and position error less than 5 meters. The challenge

pushed the limits of current methods, and featured difficult

environmental conditions, such as featureless areas, non-

reflective surfaces, dynamic obstacles, smoke or water. In

the end, nearly all teams relied on multi-row LiDARs for

precise localization. In our benchmarks, we try to relax the

goal of precise metric localization, but keep the challenging

environmental conditions.

Another approach at benchmarking robust navigation is

[17] where the authors created a framework in which they

apply visual corruptions (e.g. lens cracks) and dynamic

corruptions (e.g. forward motion leading to slight turning)

to the agent in their environment and opensource their code

to benchmark robustness of embodied navigation agents.

Compared to our environment, their work and other works

[18], [14] feature procedurally generated environments of

household interiors, while our simulator focuses more on

large-scale unstructured and dynamic environments.

There are also several datasets available for benchmarking

robust perception, such as OIVIO [19] which features explo-

ration of a mineshaft with large amounts of motion blur, or

4seasons [20] which captures one environment from a car

at multiple times in a year. These datasets are undoubtedly

useful for benchmarking robust localization and mapping.

However, robust navigation, which is often the end goal on

top of SLAM, cannot be fully evaluated using only datasets,

and requires either expensive real-world experiments, or

using a simulator, which we try to provide.

III. HARDNAV SIMULATOR

The HARDNAV simulator uses Unity both for rendering

and for physics simulation, since we do not strive for high-

fidelity control or dynamics simulation, but rather large-

scale long-term navigation tasks. We have chosen Unity

over the widely used Gazebo simulator primarily for its

ease of modifying scenes, and its superior visual fidelity,

as discussed in [21].

Challenge Examples Expected negatively affected methods

Visual corruption Dust particles, leaves/dirt lifted from ground, rain, snow, motion
blur, lens dirt, big exposure changes

all of vision

Dynamic objects Ground and air robots randomly moving around environment, grass
and trees swaying in the wind, clouds, moving water

odometry drifting if many objects nearby,
faulty object-based place recognition

Dynamic lights Flickering lights, fires, many light sources on dynamic objects, light
source on controlled robot

purely visual odometry drifting due to many
outliers or perceived motion

Illumination and visibil-
ity changes

Global directional light of varying intensity, color, angle; fog of
varying color and density

faulty visual place recognition, odometry
having low amount of features

Small structural change
across sessions

Medium-size objects’ positions being randomized, trees falling

down between sessions

wrong place recognition, relocalization,
teach-and-repeat navigation

Drastic structural
change across sessions

Passages being blocked, buildings being built, distant landmarks
disappearing, snowfall with varying height

wrong place recognition, relocalization,
teach-and-repeat navigation

Robot affecting scene Leaving footprints/tracks, moving objects on collision place recognition, relocalization

Featureless areas, trans-
parent objects

textureless corridors (no visual features), straight smooth corri-
dor/wide open area (no depth features), fences, glass walls

odometry drift, depth estimation failures in
case of vision

Perceptual aliasing /
self-similarity

Many areas having a very similar appearance appearance-wise,
geometry-wise or both. Medium in Forest1, heavy in ScifiBase1

relocalization, loop closure

Scale variation Having both small areas (buildings, small corridors) and compara-
bly larger areas (vast outdoors, big rooms) in one environment

fixed-resolution mapping/navigation (e.g.
voxel-based maps)

Large environment scale The environments are approx. 2km wide with robots being approx.
1m wide

SLAM memory problems, difficulty learning
with deep learning methods

TABLE I: The challenges for place recognition and navigation implemented (and planned, in italics) in HARDNAV. The

upper portion of the challenges in the table can all be individually enabled or disabled in the session config YAML string

for each session. The lower half challenges are caused by the design of the individual environments and are not toggleable.

The user-friendly interface of the Unity editor allows easy

creation of new environmental behaviors (e.g. adding moving

agents, automatic doors, changing textures etc.) through sim-

ple C# scripts, and also creating or modifying environments.

It is also important to mention that Unity has an asset store

with a plethora of free assets for world building, visual

effects and potential agents. Overall, we believe that the

potential of this game engine for creating challenging and

useful robotics scenarios has not yet been fully explored and

that HARDNAV might motivate this exploration.

Currently, the simulator features two worlds: one very

open and visually rich - Forest1 shown in Fig. 1 and one

with a more labyrinth-like structure and barren - ScifiBase1

shown in Fig. 4, both of which support changing of visibility

conditions and toggling of the challenges specified in Table

I through a ROS service by passing a YAML config string.

A. Implemented Agents and Sensors

As of now, the simulator offers 2 types of agents - an ide-

alized space/underwater/flying robot with full force+torque

or linear+angular velocity control, and a simple car robot.

Traversability and control for both agents should be easy to

implement, as it is not the focus of the simulator.

The sensors implemented so far are an RGB camera (can

have any number of these on a robot) and an IMU sensor.

Sensors of other modalities, such as a depth camera, an

ultrasonic beam sensor, and bumpers, are planned. We have

decided to not implement LiDARs as of yet, since we believe

these make the navigation tasks far too easy or nudge people

to take global metrically precise localization achievability as

an assumption, which we propose to move away from. We

only output the precise ground truth position of the robot to

ROS as a means of visualizing navigation progress. However,

it could be useful to add a very noisy GPS sensor for tasks

like for example ”search this approximate area of 100m

around this GPS position in the forest”.

B. Area Labels and World Configuration

Each environment in HARDNAV contains multiple areas,

which are for now defined as oriented bounding boxes, con-

taining multiple spawn points for the agent and having a text

label. The simulator sends a string message to ROS at a fixed

rate, containing the labels of all areas the robot is currently

intersecting. We find this labeling realizable in the real world

- for example when a robot is being ”shown around” a new

area, an operator could simply define an area by pressing a

button and walking the robot along approximate boundaries

of the desired area, and this specification does not require the

robot to learn the human-language semantics of for example

what ”kitchen” means. The main point of this distinction is

that we can then define missions in terms of AreaNavigation,

as specified in [1] and not just metric positions in some given

frame, and also to automatically evaluate missions such as

”reach area A, avoid area B”.

IV. ROBUST NAVIGATION AND PLACE

RECOGNITION BENCHMARKS

In this section, we propose several ways of evaluating

spatial navigation and spatial AI capabilities, and present the

tools available in HARDNAV for conveniently running these

evaluations.

A. Multi-Session Synthetic Dataset Generation

The most basic contribution of our simulator is that it can

be easily used for generating synthetic datasets for visual

place recognition under heavy inter-session change, simply

by changing the configuration file of a given environment,

and then manually driving the robot and recording a desired

dataset. We hope this can be of benefit to the visual place

Fig. 4: Top view of the ScifiBase1 environment featured in

HARDNAV. Compared to Forest1, this environment is much

more visually starved with no trees or distinct visual features,

and with heavy self-similarity, forcing agents to learn the

general, large-scale layout and being able to handle even

multiple wrong place recognitions/loop closures.

recognition community and welcome any feedback on this

matter.

B. Active Place Recognition under Heavy Environment

Change

Since successful self-localization after being

lost/kidnapped is a task necessary for succesful active

navigation, we propose a task definition we call ”active

place recognition”. Essentially, the task is that the robot

should actively explore a previously seen part of the

environment after being kidnapped, and in some given

amount of time, output a label corresponding to which area

(for example a bounding box in the world, as described

in Sec. III-B) it is in. The focus here is on active place

recognition, meaning that the robot should search for the

environmental features that disambiguate the area from

other previously seen areas. For example in the Forest1

environment, there are two nearly identical environments

which differ in subtle features, such as the shape of the

nearby mountain and where the bridge leading from the

island is placed, as shown in Fig. 2, and humans tend to

immediately look for these features to disambiguate the

situation in this task.

We believe this problem to be a vital subproblem for the

task specified in the following section:

C. Multi-Session Return Home Challenge

For evaluating navigation capabilities, we use the taxon-

omy introduced by [1] and focus mostly on the AreaGoal

navigation task - that is navigating to an area specified by a

bounding box as defined in Sec. III-B. As the first main task,

due to its importance in robotics, we chose to benchmark the

navigation by spawning the robot at multiple previously seen

areas and having it navigate to a ”home” area.

In this task specification, the robot is spawned at previ-

ously seen zones, but not necessarily at previously visited

waypoints. Previously seen in this context means seen in a

pre-recorded dataset, which can either be collected through

autonomous exploration or by manually driving the robot.

We provide an example script for running this kind of

navigation task, which can be modified to include not-seen

areas and varying amounts of environment change between

sessions to increase the difficulty.

D. Replicable benchmarks

To allow for replicable testing conditions for comparison

of robust navigation approaches, we have constructed the

environment so that without changing the YAML configura-

tion provided through the ROS reset service, the environment

will always be initialized to be the same. As an example,

we are working on specifying a fixed benchmark in our

environment, through a dataset and a script that initializes

the individual trials of returning home from different areas

visited in the dataset. We collect the dataset by driving the

robot manually, and choose the maximum times for the return

missions to be slightly higher than was the mission time of

several human subjects.

V. FUTURE WORK AND DISCUSSION

The simulator is still a work in progress, and we are

constantly adding new important features, shown on the

github website. The simulator is flexible enough to allow

creating any sort of multi-session navigation challenges, and

we intend to formulate additional spatial tasks, such as

searching for objects or covering a specified area. We will

also likely connect the simulator with AI Gym [22], so that

reinforcement learning approaches, ideally in combination

with classical robotics approaches, can be used for tackling

the simulated challenges. The priority of these potential

features will be decided based on the feedback and sug-

gestions from fellow researchers. We are also working on

a quantitative evaluation of the performance of state-of-the-

art SLAM and place recognition methods in the challenging

environments available in HARDNAV.

We hope our simulator and benchmarks will help re-

searchers develop robust spatial intelligence approaches that

allow robots to work autonomously in the difficult, chaotic

conditions of the ever-changing real world. Specifically,

we hope the presented work can contribute to solving the

following questions:

• How could we design methods that are resilient to

repeatedly being wrong - e.g. repeated wrong loop

closures, wrong relocalization after kidnapping?

• How could we design systems that accept that metric

localization and perfect scale retrieval are not attainable

at all times? What sort of reasoning and planning should

agents perform when it is unattainable?

• Is a one map policy viable for lifelong learning? Would

a hybrid map-based and sequence-based approach be

possible? How can neuroscience findings on memory

and cognitive maps help us?

• How should the mechanisms for determining staticity

or navigation-usefulness of perceived features be de-

signed? How are they handled in the brain?

REFERENCES

[1] P. Anderson et al., “On Evaluation of Embodied Navigation Agents,”
ArXiv, vol. abs/1807.06757, 2018.

[2] C. Cadena et al., “Past, Present, and Future of Simultaneous Lo-
calization and Mapping: Toward the Robust-Perception Age,” IEEE

Transactions on Robotics, vol. 32, pp. 1309–1332, 2016.

[3] S. Lowry et al., “Visual Place Recognition: A Survey,” IEEE Trans-

actions on Robotics, vol. 32, no. 1, pp. 1–19, 2016.

[4] M. Milford et al., “RatSLAM: a hippocampal model for simultaneous
localization and mapping,” in IEEE International Conference on

Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004, vol. 1,
2004, pp. 403–408 Vol.1.

[5] E. Wijmans et al., “Emergence of Maps in the Memories of Blind
Navigation Agents,” 2023.

[6] K. Ebadi et al., “DARE-SLAM: Degeneracy-Aware and Resilient
Loop Closing in Perceptually-Degraded Environments,” Journal of

Intelligent & Robotic Systems, vol. 102, 2021.

[7] E. I. Moser et al., “Place cells, grid cells, and the brain’s spatial
representation system.” Annual review of neuroscience, vol. 31, pp.
69–89, 2008.

[8] R. Epstein et al., “The cognitive map in humans: Spatial navigation
and beyond,” Nature Neuroscience, vol. 20, pp. 1504–1513, 10 2017.

[9] M. T. Banich et al., Cognitive Neuroscience, 4th ed. Cambridge
University Press, 2018.

[10] Y. Song et al., “Flightmare: A Flexible Quadrotor Simulator,” in
Proceedings of the 2020 Conference on Robot Learning, 2021, pp.
1147–1157.

[11] A. Dosovitskiy et al., “CARLA: An Open Urban Driving Simulator,”
ArXiv, vol. abs/1711.03938, 2017.

[12] S. Shah et al., “AirSim: High-Fidelity Visual and Physical Simulation
for Autonomous Vehicles,” in International Symposium on Field and

Service Robotics, 2017.

[13] A. Szot et al., “Habitat 2.0: Training Home Assistants to Rearrange
their Habitat,” in Advances in Neural Information Processing Systems

(NeurIPS), 2021.

[14] M. Deitke et al., “RoboTHOR: An Open Simulation-to-Real Embodied
AI Platform,” 2020 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 3161–3171, 2020.
[15] P. Anderson et al., “Vision-and-Language Navigation: Interpreting

Visually-Grounded Navigation Instructions in Real Environments,” in
CVPR, 06 2018, pp. 3674–3683.

[16] M. Tranzatto et al., “Team CERBERUS Wins the DARPA Subter-
ranean Challenge: Technical Overview and Lessons Learned,” ArXiv,
vol. abs/2207.04914, 2022.

[17] P. Chattopadhyay et al., “RobustNav: Towards Benchmarking Ro-
bustness in Embodied Navigation,” 2021 IEEE/CVF International

Conference on Computer Vision (ICCV), pp. 15 671–15 680, 2021.
[18] M. Deitke et al., “ProcTHOR: Large-Scale Embodied AI Using

Procedural Generation,” ArXiv, vol. abs/2206.06994, 2022.
[19] M. Kasper et al., “A Benchmark for Visual-Inertial Odometry Systems

Employing Onboard Illumination,” in Intelligent Robots and Systems

(IROS), 2019.
[20] P. Wenzel et al., “4Seasons: A Cross-Season Dataset for Multi-Weather

SLAM in Autonomous Driving,” in Proceedings of the German

Conference on Pattern Recognition (GCPR), 2020.
[21] J. Platt et al., “Comparative Analysis of ROS-Unity3D and ROS-

Gazebo for Mobile Ground Robot Simulation,” Journal of Intelligent

& Robotic Systems, vol. 106, 12 2022.
[22] G. Brockman et al., “Openai gym,” arXiv preprint arXiv:1606.01540,

2016.

	INTRODUCTION
	RELATED WORKS
	Simulators
	Benchmarks

	HARDNAV SIMULATOR
	Implemented Agents and Sensors
	Area Labels and World Configuration

	ROBUST NAVIGATION AND PLACE RECOGNITION BENCHMARKS
	Multi-Session Synthetic Dataset Generation
	Active Place Recognition under Heavy Environment Change
	Multi-Session Return Home Challenge
	Replicable benchmarks

	FUTURE WORK AND DISCUSSION
	References

