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Abstract— This work describes the automatic registration of
a large network (≈ 40) of fixed, ceiling-mounted environment

cameras spread over a large area (≈ 800 m2) using a mobile
calibration robot equipped with a single upward-facing fisheye
camera and a single backlit ArUco marker for easy detection.
The fisheye camera is used to do visual odometry (VO), and the
ArUco marker facilitates easy detection of the calibration robot
in the environment cameras. In addition, the fisheye camera is
also able to detect the environment cameras. This two-way,
bidirectional detection constrains the pose of the environment
cameras to solve an optimization problem. Such an approach
can be used to register a large-scale multi-camera system used
for surveillance, automated parking, or robotic applications.
This VO based multi-camera automatic registration method
has been extensively validated using real-world experiments,
and also compared against a similar approach which uses a
LiDAR - an expensive, heavier and power hungry sensor.

Index Terms— Multi-camera registration, infrastructure-
enabled autonomy, visual odometry, non-linear least-squares
optimization.

I. INTRODUCTION

Fig. 1: Plot of estimated poses of multiple cameras (shown as
axes) and calibration robot trajectory (dark dots). The blue straight
lines are the calibration robot’s fiducial marker detections from the
environment cameras. The units are in meter.

A distributed sensing system [1] in a parking lot can

autonomously park vehicles with drive-by-wire technology

and guide their motion in the environment, eliminating the

dependence on onboard sensors for perception and localiza-

tion, especially in controlled environments like parking lots,

warehouses, and factory floors. However, for such a network

of fixed environment cameras to be useful to an autonomous

robot for the aforementioned applications, they need to be

registered w.r.t. each other such that the 6 DoF pose of

each environment camera is known w.r.t. other environment

cameras. A tedious way to determine the camera poses would

involve detecting a calibration target (ArUco/Checkerboard)

[2] in the common Field of View (FoV) between every pair
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Fig. 2: Edge nodes: We register a distributed sensing system of
∼ 40 edge devices mounted throughout the ceiling of our test
environment. Each edge node comprises of an RGB camera (we
call it as environment camera in the paper) and compute. These are
powered over ethernet and networked and time-synced to a central
server.

of environment cameras. This approach requires overlapping

field of view (FoV) that cannot always be guaranteed, and

tiresome manual labor when a large number of cameras

need to registered. In the proposed work, we present an

approach to register a large network (≈ 40) of static ceiling-

mounted RGB cameras (Figures 2 & 3) with minimal or

no overlap between them, spread over a large area (≈ 800

m2) using a calibration robot (Figure 4) equipped with a

single upward looking fisheye camera - for visual odometry

(VO) [3] & detection of environment cameras (Figure 3), and

a single back-lit ArUco [2] marker - for easy detection of

calibration robot in environment cameras (Figure 5). We use

VO and ArUco marker detection to bridge the pose between

environment cameras. We correct drift by loop closure on

visiting previously visited locations (unlike [4]) and deter-

mine metric scale from known dimension of ArUco marker

(unlike [5]) in the absence of depth sensing (unlike [6], [7]).

We look/sense in both directions: downwards from each of

the environment camera down onto the robot (as it passes

through its FoV, Figure 5) and, upwards from the robot to the

environment camera (Figure 3) to determine the pose of each

environment camera relative to a common coordinate frame.

Apart from driving the calibration robot, all other steps

(Section III) are completely automated, requiring no manual

feature annotation, detection or matching, for example.



II. SYSTEM DESCRIPTION

A. The Distributed Camera System

The distributed camera system (Figures 2 & 3) comprises

several static environment cameras which have minimal to

no overlapping FoV. They generate images of size 1080 x

1920 pixels at 30 Hz. We use the factory provided intrinsic

calibration parameters for these cameras.

B. The Calibration Robot

Fig. 3: Looking up ↑ Edge-Node detection from Robot: Au-
tomated detection of ceiling-mounted environment cameras when
viewed from the upward-facing fisheye camera on the calibration
robot.

Fig. 4: Calibration Robot: Clearpath Jackal with an upward-
facing wide-angle fisheye camera F and an ArUco marker M. The
ArUco marker is backlit to make detection easier. The robot also
carries a LiDAR for comparison between LiDAR and camera-only
calibration.

We use a Clearpath Jackal as our calibration robot (Figure

4). It has a rigidly attached upward-facing wide-angle (160◦)

2MP fisheye camera which generates images of size 1080 x

1920 pixels at 30 Hz. The fisheye camera faces upwards and

tracks static features on the ceiling to perform VO and it also

detects environent cameras on the ceilng (using OpenCV [8]

blob detection, Figure 3), which we use to further constrain

the position of the detected cameras in the estimation pro-

cedure. A backlit ArUco marker [2] of known dimensions

is attached to the calibration robot so that the robot can be

easily detected by the environment cameras (Figure 5). The

robot has a 64 Channel Ouster 3D-LiDAR which generates

3D scans at 10 Hz used for doing LiDAR Odometry (LO)

[9] based calibration of environment cameras - a method we

will compare/bench-mark our approach against.

Fig. 5: Looking down ↓ Robot Detection from Environment
Camera: The Calibration Robot (Figure 4) viewed from an envi-
ronment camera with axes drawn on the detected backlit ArUco
marker.

III. METHOD

Described below is our 3 step approach to solve this

problem.

A. Estimate Motion of the upward-looking fisheye camera

using Visual Odometry (VO)

We use SVO [10] [11] ’s front-end to determine the

frame to frame motion of the upward-looking fisheye camera

on the robot. We eliminate drift in VO by implementing

loop closure (using DBoW2 [12] for place recognition)

and performing bundle adjustment [13] (using ceres solver

[14]). A comparison of trajectories before and after bundle

adjustment is shown in Figure 6 (compare red and green).

Fig. 6: Motion estimation using Visual Odometry (VO). The
trajectory in red is the result from SVO [10]’s front-end. We use
loop closure [12] and bundle adjustment [14] to reduce the drift
in VO (shown in green) and finally we determine the metric scale
(in meters) (Section III-B) of the trajectory using the detection of
ArUco marker on the calibration robot. The axes are in meter.
B. Determine the scale s of VO & the spatial offset T F

M

between the ArUco marker M and the upward-looking fisheye

camera F using ArUco detections

ArUco detection pose measurements T
Ck
M ∈ SE(3) are used

to determine the metric scale s of the trajectory estimated by

monocular VO and the spatial separation T F
M between the

fisheye camera and the ArUco marker. The motion-based

calibration technique [15] is employed for this purpose, using



which we align the motion estimated by VO with the motion

of the ArUco marker estimated by its detection in an envi-

ronment camera Ck. We use pose interpolation to determine

the robot pose intT
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the spatial offset T F
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marker M. The residual ri is given by:
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. Ceres solver [14] is used

to determine s and T F
M by minimizing a cost function shown

in Equation 2.

ŝ, T̂ F
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M∈SE(3)
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Here L is the number of corresponding motion segments and

ρ() is Huber Loss Function. The estimated scale s and spatial

offset T F
M are used to re-scale VO pose estimates (Figure 6)

and to estimate the environment camera poses (Section III-

C).

C. Estimate the poses of the environment cameras

1) Looking Down: For a single camera Ck of the dis-

tributed system, we gather all the ArUco pose measurements

{T
Ck
Mi

}i=0:Nk−1 which measure the poses of the ArUco marker

in the camera Ck frame as the calibration robot drives

under it, and use their respective timestamps to determine

the corresponding robot/fisheye camera pose {intT
W
Fi
}i=0:Nk−1

using interpolation. For ArUco measurements {T
Ck
Mi

}i=0:Nk−1

from camera Ck, and the corresponding interpolated robot

poses {intT
W
Fi
}i=0:Nk−1

, the pose of environment camera Ck

can be determined from Equation 3 by solving a non-linear

least-squares optimization problem using ceres library [14].
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Here Nk is the number of ArUco detection pose measure-

ments made by camera Ck and ρ() is Huber Loss Function.

We perform this optimization (Equation 3) for all environ-

ment cameras {Ck}k=1:N to estimate their respective 6-DoF

pose using respective ArUco detection pose measurements

made by looking down on the calibration robot driving below.

2) Looking Up - Position Refinement: In this step our goal

is to refine the positions {pW
Ck
}k=0:N−1 ∈ R3 of the estimated

camera poses {TW
Ck
}k=0:N−1 ∈ SE(3) by minimizing the re-

projection error between the projection π(K,TW
F

j
, pW

Ck
) of the

estimated environment camera position pW
Ck

and the corre-

sponding pixel detection

[

u

v

]

k j

(obtained using OpenCV’s

blob detection algorithm) on the upward facing fisheye

camera image. We associate π(K,TW
F

j
, pW

Ck
) to

[

u

v

]

k j

by

performing a nearest neighbour search. The residual for

minimizing the reprojection error is given in Equation 4.
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]
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rk j can be defined as the reprojection error of the kth environ-

ment camera when viewed from the jth robot key-frame pose.

Here K & π are the intrinsic calibration parameters of the

fisheye camera and the fisheye projection model respectively.

We solve this minimization problem (Equation 5) using ceres

library [14].
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Here wk j = 1 if environment camera Ck is visible in the

jth robot key-frame otherwise wk j = 0 and ρ() is Cauchy

Loss Function. Figure 1 shows a plot of estimated environ-

ment cameras, ArUco detection pose measurements and the

calibration robot trajectory after the registration procedure.

Equation 5 is similar to solving a Bundle Adjustment prob-

lem.

IV. EXPERIMENTS & RESULTS

To evaluate our method, we collect two datasets by driving

the calibration robot under the environment cameras of

the distributed system. We register 43 and 38 environment

cameras in datasets 1 & 2 respectively. In the absence of

ground truth, we collect 3D scans from the LiDAR on the

calibration robot for performing qualitative comparison of the

proposed VO based solution against a state of the art LiDAR

Odometry LO [9] based approach. One of the immediate

advantages of the VO based method over the LO based

approach is that one can perform qualitative verification of

environment camera registration by projecting environment

cameras’ positions on the fisheye camera image.

A. Verification using Re-projection Error

We present the qualitative and quantitative reduction in

environment camera re-projection errors due to refinement

(Section III-C.2) of estimated environment camera positions

in Figures 7a & 7b and Table I, respectively.

Reprojection Error (Pixel)

Before Refinement Post Refinement

Dataset 1 51.642 10.428

Dataset 2 54.245 5.675

TABLE I: Root Mean Squared Re-projection Error calculated by
measuring the reprojection error of the estimated distributed camera
positions on each fisheye camera keyframe. The reprojection error
post refinement is smaller.

B. Comparison with Lidar Odometry (LO) based method

In the absence of ground truth, we compare our method

against the state of the art Direct LiDAR Odometry (DLO

[9]), and then find environmental camera poses. The LO

based approach implements only Section III-C.1 for the



(a) Re-projection before camera position refinement. The detected
environment cameras (green) do not align with projection of environ-
ment cameras (red).

(b) Re-projection after camera position refinement. The projection
of estimated environment cameras coincide with corresponding envi-
ronment cameras on the fisheye image.

Fig. 7: Re-projection of distributed camera positions before and after re-projection error based refinement of camera positions.

Fig. 8: Comparison of estimated env. camera poses between the VO and LO methods. Top and side view of env. camera positions
estimated by VO and LO based approaches for dataset 1 & 2.

RMSD between corresponding environment cameras

φ◦ θ ◦ ψ◦ X[m] Y[m] Z[m]

LO1 ↔VO1 0.9582 0.9220 4.0727 0.2819 0.3579 0.0947

LO1 ↔VO2 0.3604 1.3453 5.0665 0.2281 0.1314 0.1104

LO2 ↔VO1 0.9768 1.3204 1.6038 0.2662 0.3376 0.1029

LO2 ↔VO2 0.3777 0.7215 1.6997 0.2099 0.1433 0.1182

TABLE II: RMSD for estimated env. camera poses between
VO and LO based approaches for both the datasets. Here LOi :
environment cameras estimated from LO based approach in dataset
i & VO j : Corresponding environment cameras estimated from VO
based approach in dataset j.
estimation process as two way detection is not possible

when using a LiDAR. As LiDAR measures 3D points in

metric units, it is not necessary to determine the metric

scale of LO, but the spatial offset between the LiDAR

and the ArUco marker is determined using motion based

calibration [15] method discussed in Section III-B. Our

goal is to discover if the VO based solution presented here

gives comparable results. In order to compare the absolute

environment camera poses we represent estimated variables

in a common frame of reference (using a method similar to

[16]). Visualization of the environment camera positions for

both the approaches and both datasets is presented in Figure

8. The RMS difference (RMSD) between corresponding

environment cameras poses estimated using both the VO and

LO based approaches for both the datasets are presented in

Table II, where we observe that the results from VO and LO

are comparable, with the maximum rotation difference being

5.07◦ and maximum translation difference being 35.8 cm.
V. DISCUSSION AND APPLICATION

The proposed VO based registration gives comparable

results as LO based registration. Also, a camera is smaller,

lighter, cheaper, and consumes less power, making its use

possible with cheaper robotic platforms that can be used

instead of the one used in this work. We use the reg-

istered environment camera system to track objects and

autonomously drive vehicles in the environment where this

system is installed. A video for the same can be found here1.

1https://youtu.be/8ddsdvJ8q38?si=sp_c7h1P9fUKVobg

https://youtu.be/8ddsdvJ8q38?si=sp_c7h1P9fUKVobg
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