
Learning Embeddings for Loop Closing Detection Using Graph Neural

Network

Abhishek Khoyani1 and Marzieh Amini2

Abstract— Loop closure detection involves matching a cur-
rent query image with images from an existing database during
simultaneous localization and mapping (SLAM). In graph-
based SLAM, each pose is defined by graph nodes, and relative
transformations are established through connecting edges. Al-
though various methods employ graph-based algorithms for
loop closure, they differ from the representation in graph
SLAM. In most cases, features from query and reference images
are utilized to compute similarity. This paper proposes the
supervised method by exploiting the graph structure with graph
neural network (GNN) to learn a new embeddings on top
of intermediate features extracted from convolutional models
that can enhance the similarity score for the loop closure
queries and matching nodes whereas diminishing the score
for dissimilar nodes, finally resulting in reduced false positives
and false negatives. GNN makes it possible to learn a new
features by gathering neighborhood information that helps to
effectively distinguishing between similarity and dissimilarity.
The proposed embeddings are evaluated in comparison with
other convolution-based features, revealing their efficacy in
enhancing evaluation metrics and overall performance.

I. INTRODUCTION

Loop closing detection (LCD) or visual place recognition

(VPR) is a crucial part of the simultaneous localization

and mapping (SLAM) algorithm that matches non-sequential

entries in the estimated graph. This process helps to prevent

the generation of false and redundant graphs and reduces the

overall drift error. The graph structure is a powerful non-

linear data structure that can effectively represent various

real-world problems, including bio-chemical networks, social

media networks, traffic signal networks, and maps, among

others. By leveraging state-of-the-art GNN [1] techniques,

we can learn the relationships between nodes and their

neighbors to make predictions about node attributes (node

classification), node linkages (edge prediction), or even over-

all graph properties (graph classification). In the context of

loop closing, the goal is to predict the similarity between

a query node and a matching node. While many existing

approaches focus solely on the features extracted from the

query and matching nodes, in [2], a conventional graph

diffusion mechanism was proposed to learn features from

the surrounding neighbors. In our previous work [3], we

have constructed a graph from the dataset and computed

the cosine similarity directly from the features extracted

This work was supported by the Natural Sciences and Engineering
Research Council (NSERC) of Canada.

1Abhishek Khoyani is with Department of System and
Computer Engineering, Carleton University, Ottawa, ON,
Canada.abhishekkhoyani@cmail.carleton.ca

2Marzieh Amini is with the School of Information Technology, Carleton
University, Ottawa, ON, Canada.marzieh.amini@carleton.ca

using a convolutional backbone. This paper presents a novel

approach to learn embeddings, utilizing a graphSAGE [4]

layer, which is a variant of graph convolutional neural

networks. The contributions of this work can be summarized

as follows:

• Investigating the applicability of GNN in the domain

of loop closing detection, potentially pioneering this

approach in the literature.

• Formulating the loop closing problem as a link predic-

tion problem, allowing us to learn similarity and dis-

similarity embeddings from prior neighbourhood data.

II. RELATED WORKS

A number of graph-based algorithms have been proposed

in the literature, but they do not construct or replicate a graph

structure that can be used in graph SLAM. For instance in

[5], a proximity graph was proposed for visual vocabulary

called hierarchical navigable small world (HNSW) instead

of BoW. Graph diffusion was implemented in [2] to pass

feature information to the neighboring nodes and checked

temporal consistency to avoid false positives. A graph-based

image representation was proposed in X-view [6], which

incorporated both the geometry and semantics of the scene.

Same kind of approach was followed in SymbioLCD2 [7]. To

learn the spatial relationship between extracted features from

the image, SymbioLCD2 generated multi-tier graph from the

features and compared them to predict the loop closure.

III. METHODOLOGY

Link prediction is a supervised binary classification prob-

lem that involves predicting whether there should be a

connection between two nodes within a graph [8]. In the

context of loop closing detection, the objective is to predict

the similarity between two images and subsequently add an

edge to the graph based on this similarity [9]. In order to train

a GNN in a supervised manner, the edges in the graph are

divided into separate train, validation, and test datasets. The

validation and test datasets exclusively contain “supervision”

edges, which are utilized for evaluation purposes. On the

other hand, the train dataset consists of both “supervision”

edges and “message-passing” edges. The “message-passing”

edges are utilized during training to facilitate the learning of

neighborhood information.

A. Dataset

The dataset preparation involved using five sequences of

image-to-image data along with their corresponding ground

truth to construct a graph. Table I provides the summary of



TABLE I: Datasets Summary

Dataset Description Image Resolution # Images # Loop Closure Matches

New College (NC - reduced) [10] Outdoor, dynamic 480× 640 394 640

City Center (CC - reduced) [10] Urban, dynamic 480× 640 274 417

KAIST North (KN) [11] Outdoor, Day & Night 900× 1200 204 510

KAIST East (KE) [11] Outdoor, Day & Night 900× 1200 200 500

KAIST West (KW) [11] Outdoor, Day & Night 900× 1200 200 500

the five sequence and respective groundtruth. Groundtruth

for each sequence is received from [12]. By combining

these five datasets, a graph with a total of 1272 nodes and

2567 positive edges was created. To simplify the process,

the graph was constructed using features extracted from

ShuffleNet, rather than the original images. It is important

to note that for this problem, there are a total of 1,616,712

possible edges between the nodes (1272×1271), out of which

only 2567 are positive edges. This characteristic makes the

problem highly unbalanced in terms of classification. To

address this issue, negative edges are dynamically added

during training based on the ratio of total possible edges

to positive edges. The dataset was split into train, validation,

and test sets in a proportion of 80%, 10%, and 10%, respec-

tively. Considering the imbalanced nature of the problem,

evaluation metrics such as specificity, precision, and F1-score

were used. Specificity helps to assess the model’s ability to

identify dissimilarities between images, precision measures

the model’s ability to correctly predict true loop closures

with minimal false positives, and the overall evaluation is

determined based on the F1-score, which takes into account

the data imbalance.

IV. EXPERIMENTAL RESULTS

The primary objective of utilizing a GNN is to learn

new embeddings on top of convolutional backbone to ef-

fectively distinguish between similar and dissimilar nodes.

This distinction is crucial as it allows the embeddings’ cosine

similarity scores to accurately reflect the level of similarity

between nodes, leading to improved evaluation metrics. The

basic architecture, as depicted in Fig. 1, involves adding two

graphSAGE [4] layers with intermediate ReLU activation and

dropout layers on top of the ShuffleNet features. GraphSAGE

layers accumulates the features from the neighbor nodes

from the training set which exhibits the higher similarity

and learns a new embeddings during training phase to

differentiate similar and dissimilar neighbors. The output of

the final graph convolutional layer represents the learned

embeddings, which are subsequently used to predict loop

closures by calculating the cosine similarity between pairs of

vertices. The number of nodes in each graph convolutional

layer and the dropout coefficient are determined through a

hyperparameter tuning strategy [13], aiming to optimize the

model’s performance.

The selection of hyperparameters is performed using the

wandb sweep agent, which iteratively runs the training loop

with different combinations of input parameter settings. The

goal is to optimize a specific metric, in this case, the cosine

embedding loss [14] on the validation set. The optimization

process spans 40 epochs. Various hyperparameters, including

the number of nodes in each graph convolutional layer and

the dropout coefficient for the model architecture, are tuned.

Additionally, hyperparameters related to the training strategy,

such as the initial learning rate, L2 normalization (decay

factor in the Adam optimizer) [15], and the patience number

to reduce the learning rate on a plateau, are also optimized.

After conducting multiple runs, the values presented in Table

II are finalized as the hyperparameter settings for the final

experiments.

TABLE II: Final hyperparameter values selected after 128

iteration monitored to minimize validation loss.

Hyperparameter Value

GCN-1 1000
GCN-2 2000

Learning Rate 1e-3
Dropout 0.5
Decay 1e-3

Once the final model architecture parameters and initial

training parameters are established, the model is trained till

the validation loss is reduced to 0.08364.

The final prediction results on the test set demonstrate a

specificity of 96.48%, precision of 95.81%, and F1-score of

87.47%. These results indicate that the proposed model effec-

tively reduces false positives while improving true positives

and true negatives.

Fig. 2 presents a comparison between the results obtained

from the direct extracted features from the ShuffleNet and

the results achieved using the proposed GNN method on

the dataset. Notably, Fig. 2 reveals that the proposed GNN

models outperform the ConvNet-based approach, achieving

an average precision of 93.94% which is at least 20% higher

than the average precision of 73.85% achieved by ShuffleNet

extracted features.

It is important to note that the proposed models require the

availability of some neighboring information initially in order

to generate suitable embeddings. As a result, these models

are not suitable for real-time applications. However, they can

be employed offline to enhance the results obtained using

online methods, particularly by reducing the occurrence of

falsely identified loop closures, which can have detrimental

effects on the overall SLAM system.

V. CONCLUSIONS

In conclusion, this paper has focused on the implemen-

tation and evaluation of a GNN approach for loop clos-

ing detection in SLAM. The challenge of predicting loop

closures in visual SLAM systems has been successfully



Flatten 

Layer

GraphSAGE

C

D

A

B

F

E

Dropout

GraphSAGE
ShuffleNet

C

D

A

B

F

E

(H,W,C) (488,14,14) (95648,) (1000,) (2000,)

Learned 
Feature

Fig. 1: Model architecture to learn the embeddings using graphSAGE layer on top of ShuffleNet.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

ShuffleNet
ShuffleNet+GCN

Fig. 2: The performance comparison of GNN versus vanilla

backbone models in terms of PR curves.

addressed by leveraging the power of graph structures and

GNN techniques. Through the use of learned embeddings

and cosine similarity, our proposed method demonstrates

improved performance in separating similar and dissimilar

nodes, leading to enhanced evaluation metrics, specifically

precision and specificity.

REFERENCES

[1] B. Sanchez-Lengeling, E. Reif, A. Pearce, and A. B. Wiltschko,
“A gentle introduction to graph neural networks,” Distill, 2021,
https://distill.pub/2021/gnn-intro.

[2] X. Zhang, L. Wang, Y. Zhao, and Y. Su, “Graph-based place recogni-
tion in image sequences with cnn features,” Journal of Intelligent &

Robotic Systems, vol. 95, pp. 389–403, 2019.

[3] A. Khoyani and M. Amini, “Real-time loop closure detection with
constructing graph,” submitted to IEEE Sensors Journal, 2023.

[4] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing

systems, vol. 30, 2017.

[5] S. An, G. Che, F. Zhou, X. Liu, X. Ma, and Y. Chen, “Fast and
incremental loop closure detection using proximity graphs,” in 2019

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE, 2019, pp. 378–385.

[6] A. Gawel, C. Del Don, R. Siegwart, J. Nieto, and C. Cadena, “X-
view: Graph-based semantic multi-view localization,” IEEE Robotics

and Automation Letters, vol. 3, no. 3, pp. 1687–1694, 2018.

[7] J. J. Kim, M. Urschler, P. J. Riddle, and J. S. Wicker, “Closing the
loop: Graph networks to unify semantic objects and visual features for
multi-object scenes,” in 2022 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). IEEE, 2022, pp. 4352–4358.
[8] D. Liben-Nowell and J. Kleinberg, “The link prediction problem

for social networks,” in Proceedings of the twelfth international

conference on Information and knowledge management, 2003, pp.
556–559.

[9] K. A. Tsintotas, L. Bampis, and A. Gasteratos, “The revisiting problem
in simultaneous localization and mapping: A survey on visual loop
closure detection,” IEEE Transactions on Intelligent Transportation

Systems, vol. 23, no. 11, pp. 19 929–19 953, 2022.
[10] M. Cummins and P. Newman, “Fab-map: Probabilistic localization

and mapping in the space of appearance,” International Journal of

Robotics Research, vol. 27, pp. 647–665, 6 2008.
[11] Y. K. Choi, N. I. Kim, K. B. Park, S. M. Hwang, J. S. Yoon, and

I. S. Kweon, “All-day visual place recognition: Benchmark dataset
and baselines,” in CVPR2015 IEEE Conference on Computer Vision

and Pattern Recognition. IEEE Computer Society and the Computer
Vision Foundation (CVF), 2015.

[12] D.-W. Shin, Y.-S. Ho, and E.-S. Kim, “Loop closure detection in si-
multaneous localization and mapping using descriptor from generative
adversarial network,” Journal of Electronic Imaging, vol. 28, no. 1, pp.
013 014–013 014, 2019.

[13] S. Falkner, A. Klein, and F. Hutter, “Bohb: Robust and efficient
hyperparameter optimization at scale,” in International conference on

machine learning. PMLR, 2018, pp. 1437–1446.
[14] B. Barz and J. Denzler, “Deep learning on small datasets without pre-

training using cosine loss,” in Proceedings of the IEEE/CVF winter

conference on applications of computer vision, 2020, pp. 1371–1380.
[15] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-

tion,” arXiv preprint arXiv:1412.6980, 2014.


