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Abstract— This paper presents a comparative study of three
modes for mobile robot localization based on visual SLAM
using fiducial markers (i.e., square-shaped artificial landmarks
with a black-and-white grid pattern): SLAM, SLAM with a
prior map, and localization with a prior map. The reason
for comparing the SLAM-based approaches leveraging fiducial
markers is because previous work has shown their superior per-
formance over feature-only methods, with less computational
burden compared to methods that use both feature and marker
detection without compromising the localization performance.
The evaluation is conducted using indoor image sequences
captured with a hand-held camera containing multiple fiducial
markers in the environment. The performance metrics include
absolute trajectory error and runtime for the optimization pro-
cess per frame. In particular, for the last two modes (SLAM and
localization with a prior map), we evaluate their performances
by perturbing the quality of prior map to study the extent to
which each mode is tolerant to such perturbations. Hardware
experiments show consistent trajectory error levels across the
three modes, with the localization mode exhibiting the shortest
runtime among them. Yet, with map perturbations, SLAM with
a prior map maintains performance, while localization mode
degrades in both aspects.

I. INTRODUCTION

The use of fiducial markers—square-shaped planar arti-

ficial landmarks with a black-and-white grid pattern—has

been favored for the application of visual simultaneous

localization and mapping (SLAM) in the scenario when

these markers can be deployable in the given environment.

This preference emerges due to the robustness and accuracy

exhibited by fiducial marker-based SLAM approaches [1-4]

over canonical approaches using visual features (e.g., ORB-

SLAM [5]) or pixel values (e.g., DSO [6]). The spectrum

of fiducial marker-based SLAM spans from methods exclu-

sively utilizing fiducial marker detection outcomes [1-3] to

hybrid techniques incorporating both marker detections and

features [4]. As our focus here centers on fiducial marker-

based SLAM, it is important to note that the subsequent

analysis dedicates solely to SLAM with fiducial markers.

Within this context, three distinct operational modes of

fiducial marker-based SLAM are discernible. The first mode,

SLAM, entails a comprehensive approach that estimates the

robot’s pose while mapping out the surrounding environment.
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The second mode, SLAM with a prior map, starts from a pre-

existing map as an initial reference value. In cases where the

map is a priori known and its states remain fixed, the third

mode, localization, exclusively estimates the robot’s pose.

A noticeable gap in the existing literature lies in the

absence of comparisons between these three modes, through

quantifiable metrics such as error analysis and process-

ing speed. While certain fiducial marker-based SLAM ap-

proaches, such as SPM-SLAM [1] and TagSLAM [2], report

error and processing speed the SLAM mode, they do not

provide corresponding data for the SLAM with a prior map

and localization modes.

Another crucial aspect yet to be addressed pertains to the

resilience of the SLAM with a prior map and localization

modes in response to variations in marker map quality.

Indeed, the performance of these modes is influenced by the

fidelity of the marker map. If the map is considered “ideal”

or at least of a high standard, both modes are anticipated to

yield comparable or superior error performance while placing

a lesser computational burden in contrast to the SLAM mode.

This attribute proves particularly advantageous in scenar-

ios requiring real-time robot localization under resource-

constrained, onboard platforms. However, if the map quality

deviates from such conditions, it may introduce degradation

of the performance of each operational mode.

In this paper, we aim to provide an evaluation of the three

different operational modes for robot localization based on

SLAM with fiducial markers, in terms of absolute trajectory

error and processing speed. In particular, for the last two

modes (SLAM with a prior map and localization modes),

we evaluate their performances by perturbing the accuracy

of the prior map to study the extent to which each mode is

tolerant to such perturbations.

We present an overview of the structure and content of

our paper as follows. Section II outlines our data collec-

tion and experimental setup to perform fiducial marker-

based SLAM in three different operational modes. We then

proceed to report the metrics comparing the three modes

in Section III, which include the absolute trajectory error

and the runtime for the optimization process per frame. We

specifically provide the runtime for the optimization process

per frame because it is the major component that contributes

to variations in processing speed across the three modes,

unlike the other components which are more or less the

same such as detecting fiducial markers. Finally, Section IV

summarizes our findings, provides concluding remarks, and

discusses the implications of our work.



II. EXPERIMENTS

A. Data collection

We collected an indoor dataset comprising multiple se-

quences of camera images and Vicon Mocap data as ground

truth using a hand-held device equipped with an Intel Re-

alsense D435i and reflective markers. During data collection,

five 36h11 AprilTags [7] with side lengths of 0.2m were

placed within the environment, as depicted in Fig. 1.

The dataset consists of eight sequences: one sequence lasts

60 seconds, dedicated to generating a prior map using the

SLAM mode for the SLAM with a prior map and localization

modes; the other seven sequences last 30 seconds each,

serving all three modes. The distinguishing factor between

these two categories of sequences is that the former captures

all AprilTags to create a comprehensive prior map, crucial

for the SLAM with a prior map and localization modes, while

the latter does not require this complete mapping of all the

AprilTags placed.

Fig. 1: For data collection, an experimental setup was ar-

ranged with the placement of five 36h11 AprilTags, each

having side lengths of 0.2m.

B. Implementation details

We used the existing WOLF codebase [3] to execute the

SLAM mode (constructing a marker map from scratch), the

SLAM with a prior map mode (loading a pre-saved marker

map for initial estimation and performing SLAM), and the

localization mode (using a pre-saved marker map as a fixed

reference for localization). As a preliminary step, the SLAM

mode was employed to create a prior map for both the SLAM

with a prior map and localization modes. It is important to

note that this marker map is not flawless, as it results from

estimating the poses of fiducial markers rather than using

their true references, inherently harboring potential sources

of error even before intentional perturbation is introduced.

For the SLAM with a prior map and localization modes,

we systematically perturbed the positions of every fiducial

marker along directions at random within the map, varying

from 0.1m to 0.5m in every 0.1m. This approach allowed us

to investigate the tolerance of each method to variations in

the marker map’s quality. We assessed the absolute trajectory

error using an open-source evaluation tool [8] and the run-

time for the optimization process per frame through Ceres

Solver [9]. All executions and evaluations were carried out

on an octa-core Intel i7-10700 CPU operating at 2.90 GHz,

with 32 GB of RAM.

III. RESULTS

Table I presents the absolute trajectory error for each of the

three localization modes across all sequences. Specifically,

for the SLAM with a prior map and localization modes,

we provide results by perturbing the positions of fiducial

markers within the prior marker map. Again, the prior

map is imperfect and hence is inherently regarded to be

perturbed even before intentional perturbation is introduced.

The perturbations range from 0.1m to 0.5m, with increments

of 0.1m, along directions at random.

When no perturbation is applied, all three modes yield

results that exhibit minimal differences within a few cen-

timeters. However, as perturbations are introduced to the

localization mode, errors increase to tens of centimeters even

with the smallest perturbation (i.e., δp = 0.10), while the

SLAM with a prior map mode consistently maintains results

within a few centimeters. This aligns with the common

understanding that the SLAM with a prior map mode is ca-

pable of recovering reference marker pose values within the

map by concurrently updating both localization and mapping

outcomes, whereas the localization mode cannot as the map

is regarded accurate and hence is fixed during optimization,

thereby limiting updates to only the localization results.

Table II presents the runtime for the optimization process

per frame for each of the three localization modes across

all sequences. Similar to the error analysis discussed earlier,

we also present results for the SLAM with a prior map and

localization modes by introducing inherent perturbations to

the positions of fiducial markers within the prior marker map.

Again, it is worth noting that the prior marker map itself

already contains undesired perturbations due to its inherent

imperfection.

The SLAM with a prior map mode does not exhibit any

distinct runtime trend in relation to the extent of perturbation

applied. However, in a general sense, it shows a slightly

longer runtime (up to about 20%) than the SLAM mode.

Conversely, the localization mode shows shorter runtime (up

to about 20%) than the SLAM mode when no perturbation

is introduced. Yet, as the perturbation level increases, the lo-

calization mode experiences a corresponding rise in runtime,

culminating in up to about 40% longer runtime at δp = 0.50

compared to the SLAM mode. This behavior is indicative

of the localization mode grappling with ill-posed problems

stemming from inaccurate map quality.

IV. CONCLUSIONS

In summary, this paper conducted a comparative analysis

of three distinct robot localization modes based on visual

SLAM with fiducial markers: SLAM, SLAM with a prior

map, and localization with a prior map. We evaluated these



TABLE I: COMPARISON OF ABSOLUTE TRAJECTORY ERROR FOR SLAM, SLAM WITH PRIOR MAP, AND LOCALIZATION

MODES. PERTURBATIONS (δp) APPLIED TO FIDUCIAL MARKER POSITIONS IN THE PRIOR MAP FOR SLAM WITH PRIOR

MAP AND LOCALIZATION MODES.

SLAM [m] SLAM with a Prior Map [m] Localization [m]
δp [m] δp [m]

sequence length [m] 0.00 0.10 0.20 0.30 0.40 0.50 0.00 0.10 0.20 0.30 0.40 0.50

1 8.07 0.07 0.05 0.05 0.07 0.08 0.08 0.08 0.06 0.23 0.22 0.44 1.18 1.21
2 8.34 0.08 0.07 0.07 0.08 0.04 0.10 0.10 0.08 0.25 0.31 0.60 1.58 1.69
3 8.21 0.08 0.08 0.08 0.10 0.10 0.09 0.10 0.10 0.21 0.28 0.45 1.28 1.34
4 8.46 0.14 0.14 0.14 0.15 0.15 0.14 0.14 0.15 0.45 0.43 0.58 0.96 2.35
5 8.19 0.13 0.13 0.13 0.13 0.11 0.13 0.13 0.14 0.40 0.52 0.44 1.28 2.43
6 8.22 0.10 0.08 0.09 0.10 0.10 0.10 0.10 0.13 0.39 0.42 1.44 2.04 2.50
7 8.57 0.12 0.12 0.11 0.12 0.12 0.11 0.11 0.11 0.49 0.42 0.61 1.78 1.54

average 0.10 0.10 0.10 0.11 0.10 0.11 0.11 0.11 0.35 0.37 0.65 1.44 1.87

TABLE II: COMPARISON OF RUNTIME OF POSE-GRAPH OPTIMIZATION PROCESS PER FRAME FOR SLAM, SLAM WITH

PRIOR MAP, AND LOCALIZATION MODES. PERTURBATIONS (δp) APPLIED TO FIDUCIAL MARKER POSITIONS IN THE

PRIOR MAP FOR SLAM WITH PRIOR MAP AND LOCALIZATION MODES.

SLAM [ms] SLAM with a Prior Map [ms] Localization [ms]
δp [m] δp [m]

sequence 0.00 0.10 0.20 0.30 0.40 0.50 0.00 0.10 0.20 0.30 0.40 0.50

1 5.07 5.26 5.79 5.00 5.75 6.23 6.42 3.05 3.53 3.90 4.56 5.33 6.06
2 4.92 5.81 5.15 5.92 6.06 5.70 6.15 4.69 5.28 5.09 6.26 7.52 8.35
3 5.31 6.43 5.71 5.50 5.20 6.30 6.11 4.60 4.33 4.71 4.90 6.20 7.12
4 5.73 6.05 5.91 6.77 6.35 6.63 6.66 4.80 4.49 7.66 4.99 6.29 7.60
5 6.23 6.19 7.34 6.27 7.42 7.02 6.81 5.81 6.33 6.83 8.06 8.61 9.76
6 6.08 6.56 4.64 6.69 6.61 7.46 6.30 4.78 7.44 6.15 7.43 9.92 9.75
7 7.95 8.80 9.23 7.45 8.06 9.11 7.94 5.22 6.66 8.13 9.19 8.47 8.99

average 5.90 6.44 6.25 6.23 6.49 6.92 6.63 4.71 5.44 6.07 6.48 7.48 8.23

modes in terms of trajectory error and runtime for the opti-

mization process. Specifically, we introduced perturbations to

the map for the SLAM and localization with prior map modes

to examine their impact on the aforementioned metrics.

When no perturbations were introduced, our hardware

experiments show that all three modes exhibited similar

levels of trajectory error, while the localization mode showed

the shortest runtime. However, in scenarios involving map

perturbations, the SLAM with a prior map mode maintained

its trajectory error and runtime performance at levels com-

parable to those in the absence of perturbation. On the

other hand, the localization mode experienced deteriorating

trajectory error and runtime performance as the magnitude

of map perturbation increased.
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