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Learned Inertial Odometry for

Autonomous Drone Racing
Giovanni Cioffi, Leonard Bauersfeld, Elia Kaufmann, and Davide Scaramuzza

Fig. 1: By combining a temporal convolutional network in a model-based filter, our method is able to estimate the trajectory of an autonomous racing drone

using an IMU as the only sensor modality. Left: Our autonomous drone flying in a race up to 70 km

h
. Right: The trajectory estimated by our method.

Abstract—Inertial odometry is an attractive solution to the
problem of state estimation for agile quadrotor flight. It is
inexpensive, lightweight, and it is not affected by perceptual
degradation. However, only relying on the integration of the
inertial measurements for state estimation is infeasible. The er-
rors and time-varying biases present in such measurements cause
the accumulation of large drift in the pose estimates. Recently,
inertial odometry has made significant progress in estimating
the motion of pedestrians. State-of-the-art algorithms rely on
learning a motion prior that is typical of humans but cannot
be transferred to drones. In this work, we propose a learning-
based odometry algorithm that uses an inertial measurement
unit (IMU) as the only sensor modality for autonomous drone
racing tasks. The core idea of our system is to couple a model-
based filter, driven by the inertial measurements, with a learning-
based module that has access to the thrust measurements.
We show that our inertial odometry algorithm is superior to
the state-of-the-art filter-based and optimization-based visual-
inertial odometry as well as the state-of-the-art learned-inertial
odometry in estimating the pose of an autonomous racing drone.
Additionally, we show that our system is comparable to a
visual-inertial odometry solution that uses a camera and exploits
the known gate location and appearance. We believe that the
application in autonomous drone racing paves the way for novel
research in inertial odometry for agile quadrotor flight.
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I. INTRODUCTION

Quadrotors are extremely agile. Making them autonomous

is crucial for time-critical missions, such as search and rescue,

aerial delivery, reconnaissance, and even flying cars [1], [2],

[3].

State estimation is a core block of the autonomy pipeline.

Inertial odometry (IO) is an excellent solution to the problem

of state estimation for agile quadrotor flight. Inertial Measure-

ments Units (IMUs) are inexpensive and ubiquitous sensors

that provide linear accelerations and angular velocities. An

odometry algorithm only based on inertial measurements has

low power and storage requirements, and it does not suffer

in scenarios where vision-based odometry systems commonly

fail, e.g. large motion blur, high dynamic range scenes, and low

texture environments. These are the typical scenarios encoun-

tered in agile quadrotor flight. In theory, inertial measurements

can be integrated to obtain 6-DoF poses. In practice, the

measurements provided by off-the-shelf IMUs are affected by

scale factor errors, axis misalignment errors, and time-varying

biases [4]. Consequently, the integration accumulates large

drift in a short time.

Recently, major progress has been made in inertial odometry

for state estimation of pedestrian motion [5], [6], [7]. These

works have shown that motion priors can be learned from

the repetitive pattern of human gait using IMU measurements.

The accuracy of these IO algorithms is comparable to the one

of visual-inertial odometry (VIO) algorithms for pedestrian

applications.

Differently from the pedestrian motion, the quadrotor mo-

tion is not characterized by any significant prior that can

be learned from the IMU measurements. For this reason,

the performance of the IO methods proposed for pedestrian

navigation deteriorates when applied to quadrotors.

https://youtu.be/2z2Slyt0WlE
https://github.com/uzh-rpg/learned_inertial_model_odometry
https://github.com/uzh-rpg/learned_inertial_model_odometry
http://rpg.ifi.uzh.ch
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In robotic applications, deep learning approaches have been

used to denoise gyro measurements that are afterward inte-

grated for attitude estimation [8], to denoise IMU measure-

ments before they are included in a VIO algorithm [9], and

to compute IMU factors in a sensor fusion algorithm [10].

In [11], the authors propose a system that estimates the full

state of a quadrotor using an IMU and 4 tachometers attached

to the rotors. Their approach relies on a heavy recurrent

network that is trained to minimize the drift of the full

trajectory.

In this work, we propose a learned inertial odometry algo-

rithm to tackle the problem of state estimation in autonomous

drone racing.

Why drone racing? Drone racing requires flying a drone

through a sequence of gates in minimum time and has now

become a benchmark for the development of new drone

technologies that can be turned into real-world products [12],

[13]. What makes drone racing so challenging is that the

platform is flown at incredible speeds, close to a hundred

kilometers per hour, pushing the boundaries of the physics of

the vehicle. At such speeds, any little state estimation error

can lead to a crash. Tackling the state estimation problem

with only onboard sensing is key to achieving full autonomy.

The main solution for state estimation of flying vehicles is

VIO [14], [15]. However, VIO fails in scenarios characterized

by motion blur, low texture, and high dynamic range due to

the unreliability of the vision system. These failure cases are

always present in drone racing. Conversely, inertial odometry

is not affected by these challenges.

We propose a learned inertial odometry algorithm that uses

an IMU as the only sensor modality. Our algorithm combines

an Extended Kalman Filter (EKF), which is driven by the in-

ertial measurements, with a learning-based module, which has

access to measurements that are related to the drone dynamics

in the form of mass-normalized collective thrust. The learning-

based module is a temporal convolutional network (TCN) that

takes as input a buffer of mass-normalized collective thrust

and gyroscope measurements and outputs an estimate of the

distance traveled by the quadrotor. These relative positional

displacements are then used to update the filter. Differently,

from [11], we propose a lightweight network, which can run

on the computer onboard the drone, and does not rely on rotor

speed measurements, which are often not available in real-time

onboard drone platforms.

We show that the proposed algorithm is superior to the

state-of-the-art filter-based [16] and optimization-based [17]

VIO algorithms as well as the state-of-the-art learned inertial

odometry algorithm TLIO [7] in estimating the pose of a rac-

ing quadrotor. Additionally, our approach achieves comparable

results to a VIO solution that uses a camera and exploits the

known gate location and appearance. Moreover, we validate

the proposed system in multiple agile quadrotor flights from

the Blackbird dataset [18]. We believe that the application in

autonomous drone racing shows the benefits of our method

and paves the way for novel research in inertial odometry for

agile quadrotor flight. An extended version of this work can

be found in [19].

Fig. 2: Block diagram of our system. A neural network takes as input a buffer
of collective thrust and gyroscope measurements and outputs relative 3-DoF
positional displacements. These displacements are used to update an EKF,
which is propagated using the IMU measurements.

II. METHODOLOGY

An overview of our system is shown in Fig. 2. We train a

temporal convolutional network [20] to regress 3-DoF relative

displacements from a buffer of length ∆t seconds containing

mass-normalized collective thrust and gyroscope measure-

ments. Collective thrust has been shown to be the preferred

choice of control inputs for agile quadrotor flight [21]. These

relative displacements represent the distance traveled by the

quadrotor in the time interval ∆t. We train the neural net

in order to learn a prior on the translational motion of the

quadrotor. The displacements predicted by the neural net

are used as measurements to update an EKF. The EKF is

propagated using a kinematic motion model of the IMU.

In this section, we describe how we leverage deep learning

in the quadrotor model. We refer to [19] for a more detailed

description on the EKF and implementation details.

A. Learned Quadrotor Model

The reference frame W is the fixed world frame, whose zw
axis is aligned with gravity. The quadrotor body frame is B.

For simplicity, the IMU frame is assumed to be the same as B.

We use the notation (·)w to represent a quantity in the world

frame W . A similar notation applies to each reference frame.

The position, orientation, and velocity of B with respect to W
at time tk are written as pw

bk
∈ R

3, Rw
bk

∈ R
3×3 part of the

rotation group SO(3), and vw
bk

∈ R
3, respectively. The gravity

vector in the world frame is written as gw.

1) Quadrotor Model: The evolution of the position and ve-

locity of the quadrotor platform is described by the following

model [22]:

ṗw
bi
= vw

bi
, v̇w

bi
= Rw

bi
· (Tb

i + Fb
ei
) + gw, (1)

where Tb
i is the mass-normalized collective thrust and Fb

ei
is

the external force acting on the platform. We will drop the

term mass-normalized when referring to the collective thrust

hereafter for the sake of conciseness. Since we do not know

the dynamics of the external force, we assume it to be a

random variable distributed according to a zero-mean Gaussian

distribution [22]. Integrating Eq. 1 in the time interval [ti, ti+1]
with the assumption that Tb

i is constant in such an interval and

using Fb
ei

= [0, 0, 0], we obtain an explicit relation between

the relative positional displacement and the thrust:

∆pi,i+1 = vw
bi
·∆t+0.5 ·gw ·∆t2+0.5 ·Rw

bi
·Tb

i ·∆t2, (2)
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and

Tb
i = 2 ·Rbi

w

(

∆pi,i+1

∆t2
−

vw
i

∆t
− gw

)

, (3)

where ∆pi,i+1 = pw
bi+1

− pw
bi

.

2) Neural Net Model: In this work, we use a TCN to

learn the positional displacements ∆pi,j . TCNs have been

shown to be as powerful as recurrent networks to model

temporal sequences [23] but they are easier to train and

deploy on a robotic platform. The neural net takes as input a

buffer of collective thrust and gyroscope measurements. These

measurements are rotated to the world frame and the bias is

removed from the gyroscope measurements. During training,

we use ground-truth orientations obtained from a motion

capture system. At deployment time, we use the orientations

estimated by the EKF. To increase the robustness of the neural

net to uncertainty in the estimated orientation, we perturb

the ground-truth orientations at training time with zero-mean

Gaussian noise. The standard deviation of this noise depends

on the expected accuracy of the orientations estimated by the

filter. We apply the same strategy to increase the robustness

of the neural net with respect to uncertainty in the estimate of

the gyroscope bias. Given as input a buffer of measurements

in the time interval ∆ti,j = tj − ti, the neural net output is

the relative displacement ∆p̂i,j in ∆ti,j . We train the neural

net with the MSE loss:

L(∆p,∆p̂) =
1

N

N
∑

j=1

∥∆pk −∆p̂k∥
2

(4)

where ∆p is the ground-truth positional displacement. We

omitted the temporal indices i, j in Eq. 4 for the sake of

conciseness.

We train our neural net on a laptop running Ubuntu 20.04

and equipped with an Intel Core i9 2.3GHz CPU and Nvidia

RTX 4000 GPU. At test time, our system runs on an NVIDIA

Jetson TX2, which is the computing platform onboard the

quadrotor. All the baselines run on the laptop. The thrust and

gyroscope measurements are sampled at 100 Hz and are fed

to the neural net in an input buffer of length 0.5 seconds.

The neural net inference, and consequently the EKF update

frequency, is set to 20 Hz. The maximum number of the past

states in the filter state is 10. With this setting, our system

runs at ∼180 Hz on the Jetson TX2 onboard the quadrotor.

III. EXPERIMENTS

We compare our system to TLIO [7], SVO [24] 1, Open-

VINS [16], and Gate-IO [19].

We use the evaluation metrics: translation absolute trajectory

error (ATET) [m], rotation absolute trajectory error (ATER)

[deg], relative translation and rotation errors [25].

A. Blackbird Dataset

Experiment Setup: In this set of experiments, we evaluate

the performance of our system and the baselines on the

Blackbird dataset [18]. The Blackbird dataset provides rotor

speed measurements recorded onboard a quadrotor flying in

1https://github.com/uzh-rpg/rpg svo pro open

TABLE I: Blackbird dataset evaluation. ATET is in meters and ATER is in
degrees. In bold is the best value and in underlined is the second-best value.

Trajectory
Eval.

metric
Algorithm

OpenVINS SVO TLIO IMO (ours)

Clover
ATET [m] 0.50 0.77 0.75 0.41

ATER [deg] 2.62 3.51 3.05 3.05

Egg
ATET [m] 1.07 2.49 1.31 1.15

ATER [deg] 2.71 3.42 2.97 2.45

Half Moon
ATET [m] 0.37 1.10 1.20 0.76

ATER [deg] 2.29 8.48 8.74 4.14

Star
ATET [m] 2.78 2.78 2.04 1.22

ATER [deg] 7.43 10.16 2.96 2.76

Winter
ATET [m] 0.12 0.29 1.13 0.22

ATER [deg] 0.87 1.18 12.15 2.32

a motion capture system, which we use to compute mass-

normalized collective thrust measurements for our network.

In addition, this dataset also contains IMU measurements

and photorealistic images of synthetic scenes. We select 5

trajectories from the dataset: clover, egg, half moon, star, and

winter, with peak velocities of 5, 8, 4, 5, 4 m
s

, respectively.

For each trajectory, 70% of the data is used for training, 15%
of the data is used for validation and, 15% of the data is used

for testing. In total, the training, validation, and test datasets

contain approx. 10, 2.5, and 2.5 min of flight data, respectively.

We use the training and validation dataset to train our network

and the TLIO network and to tune the parameters of SVO and

OpenVINS.

Evaluation: We report the absolute trajectory errors in Ta-

ble I. Our system outperforms TLIO in all the sequences. The

smallest and the largest improvements of the ATET are equal to

12% and 80% in the sequences egg and winter, respectively.

The best VIO algorithm is OpenVINS. The performance of

our system is comparable to the one of OpenVINS in all

the sequences. The largest difference in the ATET in favor

of our system is in the star sequence. In this sequence, the

high yaw rate and the resulting large optical flow render

feature tracking more difficult and, consequently, degrade the

estimation accuracy of the VIO system.

B. Drone Racing

Experiment Setup: To validate our system in drone racing

tasks, we use a custom-made quadrotor platform [26]. Our

quadrotor is also equipped with an Intel RealSense T265 cam-

era. SVO, OpenVINS, and Gate-IO use monocular grey-scale

images and inertial measurements from the Intel RealSense

T265 while TLIO only uses the inertial measurements. In all

our experiments, the quadrotor is flown in a motion capture

system and controlled by the method proposed in [27]. The

controller [27] outputs collective thrusts. These commanded

collective thrusts are used as input to our network.

Evaluation: We evaluate the performance of our system in

estimating the pose of the quadrotor in a drone racing scenario,

cf. Fig. 1. The racing track is designed by a professional drone

racing pilot and has been used in related works on drone

racing [28], [29]. In each race, the quadrotor flies 3 laps of

the track. In our experiments, the top speed of the autonomous

drone is approx. 70km
h

. We use training, validation, and test

datasets containing approx. 5, 1.5, and 1.5 min of flight data,

respectively. It takes approx. 6 sec to complete a lap of the

https://github.com/uzh-rpg/rpg_svo_pro_open
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TABLE II: ATET in meters and ATER in degrees of the racing trajectory. In
bold is the best value, and in underlined is the second-best value.

Trajectory
Eval.

metric

Algorithm

OpenVINS SVO Gate-IO TLIO IMO (ours)

Racing
ATET [m] 98.20 47.20 0.48 1.21 0.56

ATER [deg] 99.00 123.00 2.20 3.30 2.80

Fig. 3: Drone racing evaluation. Trajectory estimated by TLIO, Gate-IO and
IMO.

racing track. A visualization of the estimated trajectory by

Gate-IO, TLIO, and our algorithm in a race is in Fig. 3. The

two VIO baselines accumulate large drift, cf. Table II. We

do not include them in Fig. 3 for the sake of clarity. These

results confirm that the classical VIO algorithms fail in drone

racing due to perception challenges. The relative translation

and rotation errors in a race are shown in Fig. 4 and Fig. 5,

respectively. The average absolute trajectory errors computed

on the test dataset are in Table II. The ATET achieved by our

system outperforms TLIO by 54% and is similar to the one

achieved by Gate-IO.

In [19], we include ablation studies to validate our system

design choices.

IV. DISCUSSION AND CONCLUSION

In this work, we present a learned inertial odometry al-

gorithm to estimate the state of a quadrotor in autonomous

drone racing. We demonstrate that our system is superior to

the state-of-the-art VIO and IO algorithms in estimating the

pose of a racing drone. Additionally, our system can achieve

trajectory estimates similar to those estimated by a VIO that

relies on a camera to perform gate detection and has access

to the position of the gates.

The main limitation of our approach is that it cannot

generalize to trajectories that have not been seen at training

time. However, in drone racing competitions, the track is

known beforehand. Human pilots spend hours or even days of

Fig. 4: Drone racing evaluation. Relative translation errors achieved by SVO,
OpenVINS, TLIO, Gate-IO and IMO.

Fig. 5: Drone racing evaluation. Relative rotation errors achieved by SVO,
OpenVINS, TLIO, Gate-IO, and IMO.

practice on the race track before the competition. Similarly, our

system can be trained with the data collected during practice

time and then deployed during the competition. Future work

will investigate how to generalize to trajectories that have not

been seen at training time. A possible solution is to train the

network to estimate the positional displacements in the drone

body frame. These displacements can be integrated into a VIO

system in order to reduce the dependency on visual inputs.

For example, the learned displacement can compensate for

informationless visual inputs, e.g. in low-texture scenarios, or

low-rate camera measurements.

Although our work focuses specifically on autonomous

drone racing, we believe that the proposed approach could

have broader implications for reliable state estimation in agile

drone flight. In several tasks such as routine inspection and

surveillance, the drone is required to fly trajectories that are

known beforehand. In these situations, our system can be

integrated with a visual-based estimator in order to increase

reliability when the visual measurements are degraded, e.g. in

low-light conditions.
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