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Abstract— Onboard sensors, particularly cameras and ther-
mal sensors, are gaining traction as alternatives to GPS in UAV
navigation due to GPS’s vulnerability to signal disruptions. This
paper introduces a pioneering thermal geo-localization frame-
work using satellite RGB imagery. By incorporating multiple
domain adaptation strategies, we tackle the scarcity of paired
thermal and satellite images. Experimental results on real UAV
data affirm the robustness of our method, even in challenging
thermal imaging conditions. We also unveil the Boson-nighttime
dataset and associated code. This is, to our understanding, the
first endeavor in thermal geo-localization using satellite RGB
imagery for long-range UAV flights. Code and dataset: https:
//github.com/arplaboratory/satellite-thermal-geo-localization

I. INTRODUCTION

Unmanned Aerial Vehicle (UAV) long-range flight navi-

gation heavily relies on geo-localization methods such as the

GPS, which is susceptible to signal loss and spoofing [1].

Alternative techniques, like Visual Inertial Odometry (VIO),

offer onboard localization especially in GPS-compromised

environments but encounter drift errors in long-range flights

without loop closure detection [2]. Visual Geo-localization

(VG) using satellite RGB imagery provides drift-free local-

ization for long-range flights, matching UAV and satellite

images. Our study focuses on VG in low-light, high-altitude

UAV flights utilizing thermal imagery, addressing the chal-

lenges posed by limited satellite-thermal data pairs and the

discrepancies between thermal and satellite RGB features.

VG with satellite imagery is considered an absolute self-

localization method [1] in UAV localization research. For

traditional image matching methods, direct alignment meth-

ods [3]–[5] densely match UAV images and satellite images

with the highest pixel similarity. Image registration methods

[6], [7] employ hand-crafted feature point descriptors to

match feature points between satellite and UAV images.

Recent works [8]–[12] also introduce deep neural networks.

Specifically, previous works such as [9] use conditional

generative adversarial nets [13] to synthesize a UAV-view

image with a satellite image style. In [8], the authors combine

visual odometry and a cross-view geo-localization module

to predict the location of UAVs with a Kalman filter. Our
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Fig. 1: Thermal geo-localization with satellite imagery. Up-

per part: Our method aims to perform geo-localization with

a thermal sensor attached to a UAV in a low-illumination

environment with a satellite image database. Lower part:

The training of the geo-localization model leverages the

thermal generative module to generate fake thermal images

and the domain adaptation method.

proposed method dedicates to cross-domain geo-localization

between satellite RGB and thermal images.

Thermal Geo-localization (TG) is vital for UAV long-

range nighttime flights, yet remains underexplored compared

to VG with satellite imagery. Relevant works for UAV

thermal localization [14]–[17] study the localization and

navigation performance of Thermal-Inertial Odometry (TIO).

UAV thermal stereo odometry is proposed in [14] to navigate

short-range daytime and nighttime flights. The authors in

[16] use top-down thermal camera settings to investigate

localization performance at various times of the night. These

works demonstrate that TIO performs on par with daytime

VIO in short-range indoor or outdoor flights. Our proposed

approach focuses on geo-localization by satellite-thermal

matching for long-range high-altitude flights.

In this paper, we introduce a groundbreaking learning-

based thermal geo-localization technique for long-range

high-altitude UAV flights using satellite RGB imagery (Fig.

1). By integrating two domain adaptation methods [18],

[19], we overcome challenges from limited thermal data.

Our method’s effectiveness is demonstrated on the Boson-

nighttime dataset, particularly in areas with self-similar

thermal features. Importantly, we publicly share our code and

dataset, marking a novel contribution to long-range flights’

geo-localization using combined satellite RGB and thermal

imagery.

https://github.com/arplaboratory/satellite-thermal-geo-localization
https://github.com/arplaboratory/satellite-thermal-geo-localization
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Fig. 2: The proposed framework of thermal geo-localization. Thermal Generative Module (TGM) is optimized by L1 Loss

and least square GAN Loss. After training, the module generates fake thermal images XTG from unpaired satellite images

XSG. Satellite-thermal Geo-localization Module (SGM) finds a positive sample (green) and a negative sample (red) relative

to the query sample (pink). The triplets input the feature extractor F , the compression layer FC, and the aggregation module

FA, and the outputs are 1-D embeddings. The Triplet Margin Loss (magenta) and DANN Loss (cyan) are optimized for

geo-localization models F , FC, and FA. The dashed line for FD means the negative sample is optional for DANN loss.

II. METHODOLOGY

The proposed TG framework, depicted in Fig. 2, has two

main components: a Thermal Generative Module (TGM) and

a Satellite-thermal Geo-localization Module (SGM). In this

section, we describe them in detail.

A. Thermal Generative Module (TGM)

For the Thermal Generative Module (TGM), we leverage

the pix2pix [19] model. Let XS, XT denote the normalized

satellite images and thermal images with height H , width

W , and the number of channels C. G is the generator to

generate a fake thermal image XTG = G(XS). D is the

conditional discriminator where the first input is XT or XTG

and the second input is XS, and the output predicts if the

input thermal image is a fake thermal image. The objectives

of the module without the random noise are

min
D

LGAN(D) =
1

2
EXT

[(D(XT)− b)2]

+
1

2
EXS

[(D(G(XS))− a)2],

(1)

min
G

LGAN(G) = EXS
[(D(G(XS))− c)2], (2)

min
G

L1(G) = EXS,XT
[|G(XS)−XT|], (3)

where LGAN is the least square GAN loss [20], L1 is the L1

loss, a, b, c are the fake label, the real label and the label that

G wants D to classify for fake data, respectively. The total

loss LTGM is the weighted sum of LGAN and L1 as

LTGM(G,D) = LGAN(G) + LGAN(D) + λ1L1(G), (4)

where λ1 is the weight of L1 loss and is set to 100.0. We

train the G to minimize LGAN(G) and L1(G), and train the

D to minimize LGAN(D).

B. Satellite-thermal Geo-localization Module (SGM)

The proposed Satellite-thermal Geo-localization Module

(SGM) leverages the image retrieval workflow from deep-

VG-benchmark [21]. Additionally, we improve it with a

compression layer FC to control the dimensionality of output

descriptors, a module to train simultaneously with the paired

dataset and the generated dataset, and a DANN loss [18]

branch for domain adaption. XS, XT are a pair of satellite and

thermal images. XSG denotes satellite images without paired

thermal images and XTG denotes the generated thermal

images from XSG using the trained generator G. During

training, the framework samples thermal images from the

thermal queries dataset. Triplet mining searches for the

positive and the negative satellite database samples that

have the lowest L2 distance to the queries in the feature

(embedding) space. The satellite database is built by tiling

the satellite map with a certain stride. Each triplet consists

of one query thermal image, one positive, and one negative

satellite image. We input the triplets of H×W ×C (size and

the number of channels) to the feature extractor F , and the

output is feature maps H/16×W/16×C ′ where C ′ is the

number of channels for the feature map. The compression

layer FC consists of a 2-D convolution layer mapping from

H/16 ×W/16 × C ′ to H/16 ×W/16 × Ctarget with kernel

size = 1 and a 2-D batch normalization layer. Ctarget is target

channel number we want to control. The aggregation module



TABLE I: The results of different settings of CE, DANN loss, and Generated Dataset. The bold value shows the best result

and the underline value shows the second-best result. The arrows with metrics show the direction of good values.

Backbone CE DANN DANN Only Positive Generated Dataset R@1 ↑ R@5 ↑ R512@1 ↑ R512@5 ↑ L
512

2
(m) ↓

ResNet-18

69.3 81.8 81.1 92.0 58.9
✓ 61.1 74.5 75.5 87.7 77.8
✓ ✓ 67.4 80.2 81.4 92.1 59.8

✓ 68.0 80.5 82.1 92.2 58.9
✓ ✓ 60.1 74.5 76.1 88.9 75.8
✓ ✓ ✓ 72.1 83.9 84.5 93.7 52.2

ResNet-18

✓ 84.8 90.8 95.5 98.7 19.0
✓ ✓ 68.9 77.0 82.3 89.5 65.9
✓ ✓ ✓ 82.0 88.8 93.7 97.9 24.8

✓ ✓ 87.0 91.8 94.2 97.6 24.2
✓ ✓ ✓ 81.2 88.7 90.3 95.7 34.6
✓ ✓ ✓ ✓ 92.1 96.9 96.5 99.1 14.7

FA uses NetVLAD [22] to map the compressed feature maps

H/16×W/16×Ctarget to 1-D embeddings 1×Cfinal where

Cfinal is the final output dimension. Triplet margin loss LT is

used as

LT(q, p, n) = (∥q − p∥2 − ∥q − n∥2 +m)+, (5)

where q, p, n are the embeddings (1×Cfinal) of query, positive

and negative samples. m is a positive scalar margin and is

set to 0.1. LT aims to decrease the L2 embedding distance

of q and p and increase that of q and n.

We also introduce DANN loss [18] into SGM for domain

adaptation. FD is a domain classifier and the goal is to

classify q as the thermal label d and p, n as the satellite label

e. A gradient reversal layer is attached to the beginning of

FD, and the DANN loss is a cross-entropy loss

LDANN(q, p, n) = −
∑

c∈{d,e}

[yc,q log(oc,q)

+ yc,p log(oc,p) + yc,n log(oc,n)],

(6)

where yd,q = 1, ye,q = 0 for thermal embeddings, yd,p =
0, ye,p = 1, yd,n = 0, ye,n = 1 for satellite embeddings,

oc,q, oc,p, oc,n are the output probability of q, p, n for the

class c using FD. The reversed gradients backpropagate to

make the distribution of q, p, n similar. In the experiments,

we find that using negative embeddings n for DANN loss

affects the performance since DANN loss may conflict with

triplet margin loss on q, n. DANN loss optimizes to increase

the similarity between the distribution of q, n while triplet

margin loss increases ∥q − n∥2. We take n as an optional

input for FD. The total loss LSGM is the weighted sum of LT

and LDANN as

LSGM = LT + λ2LDANN, (7)

where λ2 is the weight of DANN loss and is set to 0.1.

III. EXPERIMENTAL SETUP

In this section, we introduce the experimental setup of

our proposed framework.

A. Datasets

In order to collect thermal aerial data, we used FLIR’s

Boson thermal imager (8.7 mm focal length, 640p resolution,

and 50◦ horizontal field of view)1. The collected images are

nadir at approx. 1m/px spatial resolution. We performed six

flights from 9:00 PM to 4:00 AM and label this dataset as

Boson-nighttime, accordingly. To create a single map, we

first run a structure-from-motion (SfM) algorithm to recon-

struct the thermal map from multiple views. Subsequently,

orthorectification is performed by aligning the photometric

satellite maps with thermal maps at the same spatial resolu-

tion. The ground area covered by Boson-nighttime measures

33 km2 in total. The most prevalent map feature is the desert,

with small portions of farms, roads, and buildings (Fig. 3).

The Bing satellite map2 is cropped in the corresponding

area as our satellite reference map. We tile the thermal map

into 512 × 512 px thermal image crops with a stride of 35
px. Each thermal image crop pairs with the corresponding

satellite image crop. Areas covered by three flights of Boson-

nighttime are used for training and validation. The remain-

ing areas, covered by the other three flights are used for

testing. The train/validation/test splits for Boson-nighttime

are 10256/13011/26568 pairs of satellite and thermal image

crops, respectively. The generated dataset has 79950 pairs of

satellite and generated thermal images.

B. Metrics

To evaluate the thermal geo-localization performance, we

use the following metrics

• Recall@N (R@N ): It measures the percentage of the

query images from which the top-N retrieved database

images are within 50 meters.

• Recall@N with prior location threshold d (Rd@N ): It

is R@N with the search region limited to a radius of d
meters from the queries. We show the results of R512@1
and R512@5.

• L2 distance error with prior location threshold d (Ld
2):

It measures the L2 distance (meter) from the queries

1https://www.flir.es/products/boson/
2Bing satellite imagery is sourced from Maxar: https://www.bing.com/m

aps/aerial

https://www.flir.es/products/boson/
https://www.bing.com/maps/aerial
https://www.bing.com/maps/aerial


to the estimated position from top-1 retrieved database

images within a radius of d meters from the queries.

We show the results of L512
2 .

IV. RESULTS

The results of our proposed framework are shown in

Tables I and Fig. 3 - 4.

A. CE and DANN Analysis

In the upper part of Table I, We compare the models

without generated dataset and find that the models with CE

have higher R512@1 and R512@5 and lower or equal L512
2

than those without CE. This reveals that using enhanced

thermal images may boost geo-localization performances for

low-contrast thermal features. DANN only positive means no

negative samples are considered in the DANN loss. We look

into the effectiveness of DANN loss and the necessity to

remove negatives from DANN loss. We find that DANN

loss with negatives always lowers the recall performance

and increases L2 distance error, which practically supports

our assumption that DANN loss can conflict with Triplet

margin loss in Section II-B. We also discover that DANN

loss without negative samples typically works with enhanced

thermal images. The model with CE and DANN (only

positive) shows the best geo-localization performance among

the models.

B. Generated Dataset Analysis

In the lower part of Table I, we observe that models with

the generated dataset notably improve the recall performance

and L2 error. Our Best Model (ResNet-18 with CE, DANN

only positive, and the generated dataset) exhibits accurate

localization results, which significantly outperforms Baseline

Model (ResNet-18). These findings highlight the ability of

synthesized datasets to improve model performance when

paired data is limited. Overall, these results provide com-

pelling evidence for the effectiveness of our approach to

thermal geo-localization.

In Fig. 3, we show examples of satellite, ground truth,

and generated thermal images with and without CE. The

visualized results show that the thermal features of the

farm and building portion are mostly clear and consistent

in the generated results, while those of roads and deserts are

distorted. The results with CE show detectable textures on

that portion. We recognize that the existence of clear textures

impacts the performance of the geo-localization model.

C. Visualized Geo-localization Results

We compare the visualized SGM results of the Baseline

Model and Our Best Model in Fig. 4. Our framework can

retrieve accurate results on both farm regions and desert

regions with the indistinct self-similar thermal feature, as

shown in the examples. However, the baseline setting shows

more errors than our best setting. We identify two types

of failure cases: Offset error and localization failure. Offset

error (The 1th and 2th columns of the 2nd row) results in

the substantial offset (≥ 50m) of the retrieved satellite

S
at

el
li

te
G

T
C

E
T

h
er

m
al

G
en

.
C

E
T

h
er

m
al

Fig. 3: Examples of satellite images, ground truth (GT)

thermal images, and generated (Gen.) thermal images with

CE in the test region.
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Fig. 4: Examples of ground truth thermal images with CE,

correct and failed Top-1 retrieved satellite images in the test

region. The correct and failed ones are bounded by green

and red colors, respectively.

image from the true one. Localization failure (The 3th and

4th columns of the 2nd row) results in completely wrong

retrieved results, which may cause a localization system

failure. The Baseline Model suffers from limited paired data

and self-similar low-contrast thermal features and makes

more offset errors and localization failures, while Our Best

Model mitigates the above problems.

V. CONCLUSIONS

We introduced a thermal geo-localization framework for

high-altitude UAV flights using satellite imagery. Addressing

the challenge of limited paired satellite and thermal images,

our approach blends adversarial domain adaptation with gen-

erative modeling, capitalizing on unpaired satellite images.

The results demonstrate enhanced geo-localization accuracy,

even in regions with low-contrast thermal features.
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muzza, “Data-efficient collaborative decentralized thermal-inertial
odometry,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp.
10 681–10 688, 2022.

[18] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by
backpropagation,” in International Conference on Machine Learning

(ICML), 2015, pp. 1180–1189.

[19] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image transla-
tion with conditional adversarial networks,” in IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 1125–
1134.

[20] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley, “Least
squares generative adversarial networks,” in Proceedings of the IEEE

International Conference on Computer Vision (ICCV), 2017.

[21] G. Berton, R. Mereu, G. Trivigno, C. Masone, G. Csurka, T. Sat-
tler, and B. Caputo, “Deep visual geo-localization benchmark,” in
IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), 2022.
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