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Abstract— We present a system for creating building-scale,
easily navigable 3D maps using mainstream smartphones. In
our approach, we formulate the 3D-mapping problem as an
instance of Graph SLAM and infer the position of both building
landmarks (fiducial markers) and navigable paths through the
environment (phone poses). Our results demonstrate the sys-
tem’s ability to create accurate 3D maps. Further, we highlight
the importance of careful selection of mapping hyperparameters
and provide a novel technique for tuning these hyperparameters
to adapt our algorithm to new environments.

I. INTRODUCTION

Indoor 3D mapping and navigation are of vital importance

in a number of applications including autonomous mobile

robots which need to both accurately determine their position

within complex indoor environments and construct optimal

plans to move towards a desired destination. Additionally,

indoor navigation for pedestrians is becoming increasingly

important, e.g., for folks who are navigating in large, unfa-

miliar environments or for folks who have difficulty navigat-

ing (e.g., folks who are blind or low vision).

The task of creating a map of an environment while

simultaneously localizing a robot (or other device) within

that environment is known as the Simultaneous Localization

and Mapping (SLAM) problem [1], and many researchers

have contributed to the vast body of literature on SLAM.

Much of the work has focused on methods that are well-

suited to wheeled, mobile robots. In particular, researchers

have focused on approaches that fuse wheel-encoder-based

odometry with data from range sensors [2]. In our work, we

focus on methods that work well for mapping, localization,

and navigation with modern smartphones, which can use

visual-inertial odometry [3] to estimate their own motion as

well as identify landmarks using onboard cameras.

Visual-inertial odometry (VIO) is a technique whereby

inertial measurements from accelerometers, gyroscopes, and

magnetometers are fused with motion constraints derived

from image processing to estimate the change in device

pose between subsequent video frames. By propagating this

estimate from frame to frame, one can compute the device

pose relative to its starting location. While VIO algorithms on

modern smartphones are known to be quite accurate [4], they

suffer from the same limitations as odometric approaches

to motion estimation: only relative motion is computed

requiring additional information to localize within a known

environment and small errors in motion estimates accumulate

over time to cause large scale localization failures.

1Olin College of Engineering, 1000 Olin Way, Needham, MA USA.

Fig. 1. Three of the AprilTags used as fiducial markers by our mapping
system. The 6 degree-of-freedom position of these tags can be accurately
detected by a smartphone camera across a range of lighting conditions.

To combat the shortcomings of VIO, we use fiducial

markers (or “tags”) with planar patterns that can be readily

identified in a camera image. These fiducial markers, called

April Tags [5] fig. 1, produce best-in-class orientation detec-

tion [6] (which is the primary concern for our application).

We selected tags based on three factors: (1) there are compar-

atively fewer fiducial markers-based SLAM approaches (see

Section II), (2) tags are distinct landmarks for people who

are blind or visually impaired navigating unfamiliar indoor

environments (3) fiducial markers are well-suited to dynamic

indoor environments with highly variable lighting conditions.

Contributions:

1) Fiducial-based SLAM system optimized for pedestrian

navigation in building-scale indoor environments

2) Explore the significance of hyperparameter tuning for

effective navigation and provide methods to tune hy-

perparameters with and without a ground truth dataset

3) Deploy fiducial-based SLAM to a publicly available

smartphone app for map creation and navigation.

II. RELATED WORK

Tag SLAM [7] is an approach to fiducial-based SLAM that

uses a factor graph to fuse observations of tags at multiple

time points and from multiple cameras. In contrast to our

approach, Tag SLAM is primarily optimized for the case

where multiple tags can be seen at all times by at least

one of the cameras. However, we assume sparse tags that

are occasionally visible, which is more suited to the case of

indoor, pedestrian navigation.

The work of Wang et al. [8] builds on Tag SLAM by

better handling pose ambiguities in the detection of fiducial

markers. In contrast to our work, Wang et al.’s method

requires tags to be detected on each frame, and if tags are

not detected a relocalization process is needed.

Uco Slam [9] is an approach to combining keypoint-based

mapping with fiducial markers. The system shows good



performance for sequences both with and without fiducial

markers. [9] uses tag corner reprojection errors which we find

to be less robust when high odometry drift occurs between

loop closures. Further, we additionally explore the challenge

of hyperparameter selection and the impact on map quality.

III. METHODS

In this section, we describe the processes for map gen-

eration, user localization, and shortest-path construction for

navigation to a desired location. The core of our approach is

based on Graph SLAM, specifically the g2o algorithm [10].

We use Graph SLAM as a means of combining odometry

data with observations of fiducial markers (April Tags [5]).

A. Map Generation

During the mapping process, the user walks through the

environment and captures the location of fiducial markers

by detecting the markers with the phone’s camera (using the

VISP3 library [11] for tag detection and pose estimation).

Additionally, the user can indicate points of interest within

the environment (e.g., particular rooms in the building or

other building amenities) by placing the phone in the ap-

propriate location and entering information via an on-screen

text box. The data collected from this process is fed into our

mapping algorithm, which creates a map consisting of the

time series of 3D device poses and the 3D landmark poses.

1) Graph SLAM Formulation: Graph SLAM approaches

typically consist of two components: a frontend, which

translates available sensor data to specific constraints on the

robot motion and the poses of landmarks in the environment,

and a backend, which optimizes the constraints generated by

the frontend to find the best possible map.

a) Notation: We denote the 6-degree-of-freedom pose

of the phone (or robot) as x(t). Specifically, each x(t)
∈
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is a compact quaternion repre-

senting the 3d-orientation. The pose of the ith landmark is

represented as y(i)
∈ R

6. We use the notation X to refer

to the set of all landmark and phone poses, which form the

optimization variables in our SLAM formulation.

Our frontend constraints are quadratic functions whose

coefficients are given by importance matrices. We write these

importance matrices as Λ and we use the notation Λ(Θ) to

make explicit the dependence of these importance matrices

on algorithm hyperparameters Θ.

The reference measurements (e.g., those obtained from

the phone’s odometry), which provide the soft constraints

on the relative pose of consecutive phone poses are written

as m(t,t+1)
∈ R

6 (the measured relative pose of the phone

at time t+1 expressed in terms of the measured pose of the

phone at time t).

b) SLAM Frontend: Our SLAM frontend includes three

types of constraints that define our optimization function.

ℓ(X ) = ℓodom(X ) + ℓgravity(X ) + ℓtag(X ) (1)

The function ℓodom(X ) encodes soft constraints generated

by our odometry measurements and is defined as:

ℓodom(X ) =

T−1
∑
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e
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Where r(x(t),x(t+1)) represents the relative position.

ℓtag(X ) encodes soft constraints generated by our tag

measurements and is defined as:

ℓtag(X ) =
N
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e
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For the ith tag measurement ai denotes the index of the

phone pose and bi denotes the index of the landmark.

Finally, the gravity vector in the phone frame can be

observed drift-free using the phone’s accelerometer which

we add as an additional loss function ℓgravity(X ):

ℓgravity =

T
∑

t=1

e
(t)⊤
gravityΛgravitye
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gravity . (4)

e
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gravity = m

(t)
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Where m
(t)
gravity represents the measurement of the gravity

vector in the phone’s frame at time t and fgravity(x
(t))

represents the predicted measurement based on a candidate

phone pose, x(t).

c) SLAM Backend: For our SLAM backend we use

a sparse, block-wise optimizer using Levenberg-Marquardt

method [12] to progressively reduce the map error from the

g2o package [10]. We specify a set of “weights”, Θ, which

capture our importance given to each of the loss objectives.

We simplify our weight space by tying various parameter

values together to arrive at the following four hyperparam-

eters: tag position variance, tag orientation variance, linear

odometry variance, and angular odometry variance. A typical

backend optimization result is shown in Figure 2.

B. Metrics and Map Evaluation Procedures

1) Ground Truth: We wanted a quantitative metric of

how well maps generated from our system matched the true

geometry of the location. This goal necessitated a ground

truth measurement to quantify this difference. While many

approaches exist for measuring ground truth tag positions

including motion capture systems or laser-based surveying

equipment, we decided to use a higher-accuracy SLAM sys-

tem (with access to better sensors) as a low-cost alternative.

Labbé’s RTABMap [13] is a system that fuses LIDAR,

VIO, and measurements of fiducial markers to create a 3D

map of an environment. Ground truth metric (or GT) will be



Fig. 2. Visualization of Backend Optimization on Small MAC Dataset. This
visualization is indicative of how the optimization shifts tag and odometry
positions to more acccurately reflect the physical environment.

Fig. 3. Two screenshots from our navigation app that demonstrate the
idea of the shift metric. Left: a tag is detected and used to align the map
(consisting of tag poses) within the current tracking session. Right: As we
approach a second tag, we see that the predicted position of the tag (black
square) does not match the physical position of the fiducial marker. The
intuition is that better maps will, on average, require smaller shifts to adjust
the map when compared to worse maps.

a measure of how much a map generated through our system

differs from the map generated by RTABMap. To compute

this metric, we iterate over each tag and use it as an “anchor

tag” to align its pose to its ground truth pose. With both maps

in the same coordinate system, we compute the Euclidean

difference between all corresponding tags in the two maps.

The average normalized translational error is computed with

each tag being the anchor and then averaged together to

yield the ground truth metric. This can be interpreted as the

average error of a tag’s position (in meters) for every meter

walked in the environment from the last tag observation.

2) Shift Metric: To evaluate and tune our system in novel

environments (without access to a LIDAR-enabled iPhone),

we developed the shift metric. The shift metric is based on

the intuition that with a perfect map, subsequent observations

between two tags should result in near-matching relative

transformations. While some discrepancy is expected due to

imperfect odometry, we would expect the magnitude of the

discrepancy to be less for more accurate maps than for less

accurate maps. This intuition is captured in Figure 3.

We formalize the intuition above by first anchoring the first

tag detections in the unoptimized and optimized map. Then

we measure the second detected tag’s translational difference

and normalize based on the distance from the first tag. This

error is calculated for and averaged across all tags, yielding

the shift metric for a dataset. This can be interpreted as

the average translational error between neighboring tags for

every meter apart they are positioned.

C. Map Navigation

Our mapping procedure generates the 3D-poses of each

April Tag along with the time series of 3D-poses of the

phone during the map generation process. In order to nav-

igate within the map, we must address two key problems:

localization and path planning.

1) Localization: We formulate the localization problem

using a similar graph optimization formulation that we use

for map generation. We construct odometric constraints to

specify the relative motion of the phone over time. In contrast

to our map generation formulation, we consider the tag poses

to be fixed. We run the graph SLAM optimizer after each

set of tag observations in order to update the estimate of

the user’s (the phone’s) current position. The results of the

previous optimization are used as an initial guess for the next

optimization (warm start) in order to speed up convergence.

2) Path Planning: Our core assumption in planning is

that the path walked by the user during the mapping process

represents a navigable path. With two consecutive phone

poses generated from our graph SLAM algorithm, we can

define a navigable line segment within the map. We rep-

resent the collection of line segments as a graph where

poses collected subsequently in time are connected via a

Euclidean-distance-weighted edge. Additionally, we detect

self-intersects and insert additional graph nodes that serve

as junctions to connect multiple path segments collected at

disparate points in time. The resultant weighted graph can

be used to generate the shortest paths from the user’s current

position to a desired destination within the map.

IV. EXPERIMENTS

To better understand the performance of our system under

known conditions, we tested using simulated data and val-

idated with real data collected from a smartphone moving

about in a large multi-story building. Each experiment was

conducted on a series of four datasets, one large dataset and

one small dataset in two different locations Table I.

A. Simulated Data

To understand the correlation between our system’s per-

formance and noise present in data, we created simulated



TABLE I

PHYSICAL DESCRIPTIONS OF THE FOUR MAPS.

Map Name Distance Traveled (m) Floors Traveled Tag Detections

Small WH 126.56 1 7
Big WH 271.97 1 19

Small MAC 379.12 1 25
Big MAC 1400.3 2 52

data by using an actual trajectory of device poses collected

from the phone and adding varying degrees of noise. Noisy

estimates of tag positions are also generated along the path

given some hypothetical locations of tags and we then

evaluate based on recovery of the true tag positions using

the metrics discussed in Section III-B.

We first used this simulated environment to evaluate the

effectiveness of the shift metric in supplementing the true

ground truth metric in hyperparameter selection. A specific

trial with artificial noise displayed an equivalent normalized

error of 0.01453 with both the ground truth metric and the

shift metric suggesting its applicability as a surrogate in

hyperparameter optimization. We observed this same result

in simulated scenarios with tag observation noise, however,

the shift metric did occasionally yield marginally worse

performance in datasets with low noise.

B. Real Data

To validate our system within physical environments, we

first assessed whether there would be a significant improve-

ment in ground truth accuracy through optimization. Next,

we hypothesized that the shift metric would provide an

effective method for hyperparameter optimization and allow

us to adapt our algorithm to novel environments.

1) Improvement in Ground Truth Accuracy: We tested the

hypothesis that our system would improve performance with

respect to the ground truth metric when compared to a system

that simply used the first observation of each unique tag

to create the map (we call this approach Pre-Optimized).

The optimization results of the aforementioned datasets are

shown in Table II. These results show a substantial improve-

ment in ground truth accuracy across all four tested datasets.

TABLE II

OPTIMIZATION RESULTS ACROSS FOUR DATASETS, COMPARING GROUND

TRUTH METRICS FROM PRE-OPTIMIZED, OPTIMIZED, AND SHIFT

Map Name Pre-optimized Optimized Shift

Small WH 0.07507 0.05882 0.05953
Big WH 0.05689 0.04896 0.05012

Small MAC 0.05105 0.03449 0.05029
Big MAC 0.05059 0.03364 0.04984

2) Hyperparameter Selection: We replicated the experi-

ment in Section III-B with physical data to assess whether

the shift metric could serve as a reliable surrogate to the

ground truth metric for tuning hyperparameters. Figure 4

demonstrates a strong positive correlation between the two

performance metrics and suggests the shift metric can be

used as a surrogate when choosing hyperparameters.

Fig. 4. Full sweep results of large and small maps in WH, visualizing a
strong positive correlation between the shift metric and ground truth metric.
Each point corresponds to a different set of optimization hyperparameters.

For each of our four datasets, we computed the ground

truth metric with respect to those that directly minimized the

ground truth error and those that minimized the shift metric.

As shown in Table II, the accuracy obtained when optimizing

with the shift metric is close to that obtained when directly

minimizing the ground truth metric.

V. DISCUSSION AND POSSIBLE EXTENSIONS

The results shown in Section IV highlight both the need

for careful hyperparameter selection for SLAM with sparse

landmarks (e.g., tags placed every 10-20 meters as was done

in our experiments) as well as the potential for the shift

metric to serve as an effective method for tuning hyperparam-

eters. The shift metric and its ability to tune models to novel

environments provide a potential method for adapting our

SLAM method based on lighting conditions, camera quality,

and other factors specific to a mapping session. We intend to

extend this system with hyperparameters selected from easily

measurable environmental features and integration of Google

Cloud Anchors for additional stationary visual features.

VI. CONCLUSION

The Invisible Map project is a full-featured indoor map-

ping and navigation system designed to work with modern

smartphones. The system prioritizes robustness at each stage

with the eventual goal of providing accessible indoor, turn-

by-turn pedestrian navigation. Our system can be deployed

easily by users regardless of their technical expertise, and we

are currently working to evaluate its usability as an indoor

navigation tool for folks who are blind or low vision. More

generally, the system can be used in robotics that combine

visual-inertial navigation with fiducial markers.

VII. ACKNOWLEDGEMENT

This material is based upon work supported by the Na-

tional Science Foundation under Grant No. 2007824. We

thank William Derksen for contributions to this work.



REFERENCES

[1] A. A. B. Pritsker, Introduction to Simulation and SLAM II. Halsted
Press, 1984.

[2] S. Thrun, “Probabilistic robotics,” Communications of the ACM,
vol. 45, no. 3, pp. 52–57, 2002.

[3] G. Huang, “Visual-inertial navigation: A concise review,” in 2019

international conference on robotics and automation (ICRA). IEEE,
2019, pp. 9572–9582.

[4] P. Kim, J. Kim, M. Song, Y. Lee, M. Jung, and H.-G. Kim, “A
benchmark comparison of four off-the-shelf proprietary visual–inertial
odometry systems,” Sensors, vol. 22, no. 24, p. 9873, 2022.

[5] J. Wang and E. Olson, “Apriltag 2: Efficient and robust fiducial
detection,” in 2016 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE, 2016, pp. 4193–4198.
[6] M. Kalaitzakis, B. Cain, S. Carroll, A. Ambrosi, C. Whitehead,

and N. Vitzilaios, “Fiducial markers for pose estimation: Overview,
applications and experimental comparison of the artag, apriltag, aruco
and stag markers,” Journal of Intelligent & Robotic Systems, vol. 101,
pp. 1–26, 2021.

[7] B. Pfrommer and K. Daniilidis, “Tagslam: Robust slam with fiducial
markers,” arXiv preprint arXiv:1910.00679, 2019.

[8] Z. Wang, Z. Zhang, W. Zhu, X. Hu, H. Deng, G. He, and X. Kang,
“A robust planar marker-based visual slam,” Sensors, vol. 23, no. 2,
p. 917, 2023.

[9] R. Munoz-Salinas and R. Medina-Carnicer, “Ucoslam: Simultaneous
localization and mapping by fusion of keypoints and squared planar
markers,” Pattern Recognition, vol. 101, p. 107193, 2020.
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