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Abstract— Underwater localization and mapping remains an
unsurmounted challenge with multiple attempts, but always
hindered through assumptions or lack of generalizations for
every situation. What makes the underwater environment so
challenging is that fact that cameras are often faced with limited
visibility, which limits the field of view to a few meters of often
featureless areas. Imaging sonars are hence often preferred
as the perception sensor of choice. However, they too have
several drawbacks to them. While imaging sonars are able to
see further than their optical counterparts, the measurements
they make of a scene usually do not stay consistent with
change in viewpoints. This makes the data association aspect
for feature based methods very difficult. In this paper we
introduce a pose-supervised network which provides us with
feature descriptor which are robust to changes in view points
which allow us to obtain far more reliable feature matches when
compared to traditional descriptors like AKAZE and camera
image trained feature descriptor networks. Furthermore, these
enhanced descriptors exhibit superior accuracy in matching
sonar images even with substantial viewpoint variance, paving
the way for efficient loop closures and bolstering sonar-based
place recognition capabilities.

I. INTRODUCTION

Feature-based methods are a popular technique to perform

localization and mapping, where uniquely identified features

are tracked and matched across frames. These methods work

particularly well for frameworks using cameras as their

choice of perception, as we can leverage the photometric

consistency of camera images to generate accurate feature

correspondences. Camera-based frameworks often falter in

underwater environments for several reasons. One of which

includes the loss of color information that occurs at increas-

ing depths and limited visibility due to turbidity - thereby

severely limiting the amount of useful data the robot can use.

To combat these problems, imaging sonars are very useful to

use in underwater situations. Therefore, imaging sonars are

the best available sensor for underwater scenarios, but lack

compatible, robust feature descriptors. Traditional feature

descriptors tend to suffer due to the speckle noise in sonar

images and any large changes in the viewing angle. Recent

research on learned feature descriptors for cameras have

shown encouraging results when used for correspondence

estimation. Most supervised methods require ground truth

correspondence between feature points for training, however

recently a novel weakly-supervised framework has been able
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to train robust feature descriptors by using relative camera

poses without relying on ground truth correspondences. In

this work, we apply a weakly-supervised framework for

sonar images by leveraging an analogue to the epipolar line

for sonar to be used as a loss function. This gives a data and

time efficient way of obtaining trained feature descriptors for

sonar images which can outperform the traditional methods

used.

II. RELATED WORK

Feature descriptors and feature detection are a well studied

area of research in the optical image space. A few popular

examples of feature descriptors are SIFT [1], ORB [2] and

AKAZE [3]. These feature descriptors work very well for

optical images, and a large contribution to their success

is the fact that images of a scene taken from moderate

changes in viewing angle do not alter the pixel values of the

objects drastically. This concept is commonly referred to as

photometric consistency. This consistency is not applicable

to images generated from imaging sonars. The same object

viewed from different angles would give different intensity

returns as well as different observable shapes, something

which is dictated by the material and geometry of the

object under observation. Feature correspondence using these

descriptors requires that they remain consistent and reliable

for a particular scene. The aforementioned descriptors have

been used for sonar images in tasks regarding acoustic

structure from motion and feature-based SLAM [4, 5]. These

descriptors worked as long as the change in viewing angle

was minimal. Tueller et al. [6] give a summary of different

keypoint detectors on sonar images but do not discuss how

well the descriptors perform for feature matching. As these

feature descriptors were developed keeping RGB images

in mind, which are represented in euclidean space and do

not experience the large speckle noise as seen in acoustic

images, they can fail under common conditions. Examples

of this in simulation and real-world scenarios are given in

Figure 1. The downstream effects of this failure can result in

poor, or error-prone loop closure detection as well as state

estimation. Thus, for reliable feature-based SLAM, a robust

feature descriptor and correspondence method designed for

sonar images is required.

Developing a new feature descriptor for a specific type

of sensor is a possibility [8], and there has been recent

development on a SIFT like descriptor made for multi-

beam sonar [9]. The drawback to this process is that the

descriptor would need tuned for different imaging sonar

models, as each sonar make has a unique elevation, bearing



and range specification. Recent research on visual descriptors

has focused on deep learning to solve this task. There have

been many supervised methods such as Superpoint [10] and

LOFTR [11]. In Superpoint, the feature point and feature

descriptor generation is kept disjoint. Superpoint uses mag-

icpoint to detect keypoints, whereas the superpoint network

works on producing the learned feature descriptors. Follow

up work in Superglue [12] utlizes the superpoint feature

descriptors to form a robust feature matching framework.

As one would expect, approaches similar to superpoint rely

heavily on data.

These methods are hard to replicate for imaging sonar

due to limited open access sonar data, as well as ground

truth feature point information. As such, there is research

which is focused on semi-supervised methods which leverage

sensor pose information to negate the need for ground

truth correspondences between feature points. They have

been successful in achieving better accuracy than their fully

supervised counterparts, while requiring less training data.

An example of a pose supervised method is CAPSNet by

Wang et al. [13]. Given the pose information between two

images of the same scene, CAPSNet uses a set of two loss

functions, epipolar loss and cyclic loss. The premise of their

system is based on the principle that a point of interest

in the first image, should lie on the epipolar line of the

corresponding point on the second image.

III. PRELIMINARIES

A. Imaging Sonar Sensor Model

Imaging sonars are active acoustic sensors which work on

the principle of measuring the intensity of the reflections of

sound waves emitted by it. They are analogous to optical

cameras in the sense that they interpret a 3D scene as a

2D image. However, the images provided by these sensors

are very different. The imaging sonar sensor model uses

a slightly different coordinate frame convention compared

to the standard pinhole camera model for optical images.

The x axis points forward from the acoustic center of the

sensor, with the y axis pointed to the right and z axis pointed

downward, as shown in Figure 2. This coordinate frame is

preferred due to the way the image formation occurs for

(a) AKAZE and Brute Force Match-
ing (BF).

(b) AKAZE with Joint Compatibil-
ity Branch and Bound (JCBB).

Fig. 1: AKAZE provides a reasonably good number of keypoints. However,
when pose differences may be large, the descriptors will fail to provide
matchable pairs. Even robust matchers like JCBB are unable to provide
meaninful correspondences. Images are from the underwater classification
dataset by Singh et al. [7].

imaging sonars. Unlike in the pinhole camera model, where

the scene from the viewable frustum is projected onto a

forward-facing image plane, for imaging sonars the scene

is projected into the zero elevation plane, which is the xy

plane in the sonar frame.

Following the notation in [14], consider a point P with

spherical coordinates (r, θ, φ) - range, azimuth, and eleva-

tion, with respect to the sonar sensor. The corresponding

Cartesian coordinates are then

P =





Xs

Ys

Zs



 = r





cos θ cosφ
sin θ cosφ

sin θ



 (1)

When considering an image formed from the pinhole

camera model, an arbitrary pixel location can provide us

information like the azimuth and elevation angle, but the

range information is ambiguous. Every point lying along the

ray in 3D would project onto the same pixel location in the

image. In the imaging sonar model, a 3D point is projected

onto the image plane, or zero elevation plane as

p =

[

xs

ys

]

= r

[

cos θ
sin θ

]

=
1

cosφ

[

Xs

Ys

]

. (2)

In the projective camera model, each pixel has a cor-

responding ray that passes through the sensor origin. In

contrast, the sonar sensor model has a finite elevation arc

in 3D space, as seen in Figure 2 as a red dotted line. A

pixel in a sonar image can provide us the azimuth and

range information of the arc, but loses the elevation of

the arc entirely, just like how range information is lost for

the projective camera model. This nonlinear projection adds

siginificant complexity, coupled with the very narrow field

of view most imaging sonar sensors have makes seemingly

straightforward tasks for optical cameras appear rather dif-

ficult for imaging sonars. Another complication arises from

the information these pixels hold. For optical images, pixels

measure the intensity of the light reflected towards the sensor

from a particular surface patch along the corresponding ray.

Thus, each pixel would likely correspond to a single unique

surface patch. This allows for different viewpoints to have

similar pixel values when accounting for small motions of

the camera origin. On the other hand, when it comes to

acoustic images, each pixel need not correspond to a single

surface patch. All surfaces along an elevation arc may reflect

sound emitted by the sensor, and as such a single pixel may

contain the compounded intensity of multiple surfaces, which

may not be consistent even with slight changes to the sensor

origin.

IV. METHOD

A. Sonar Epipolar Geometry

Negahdaripour introduced the concept of the epipolar

contour [16]. In cameras, the epipolar line is defined as the

intersection of the epipolar plane of a point in space with

the image plane. As a result, it can also be thought of as

the projection of the line joining the camera center and the



Fig. 2: The basic imaging sonar sensor model of a point feature. Each pixel
provides direct measurements of the bearing / azimuth (θ) and range (r),
but the elevation angle (φ) is lost in the projection onto the image plane
- analogous to the loss of the range in the perspective projection of an
optical camera. The imaged volume, called the frustum, is defined by the
sensors limits in azimuth [θmin, θmax], range [rmin, rmax], and elevation
[φmin, φmax]. Reprinted from [15].

point in 3D on to the image plane of the other camera . This

line is a function of the line going into the plane from the

first view, in other words it can be considered as the depth.

When it comes to sonar stereo, epipolar geometry involves

the use of the elevation arcs as the analogue to epipolar lines,

and using their projection as an epipolar contour. We will

describe the epipolar geometry in brief here, but refer the

reader to [16] for a detailed explanation.

We refer to Section III-Awhere we again use Equation 1

for notation relating to the conversion of a point in polar

space to the Cartesian space. However, since we are focused

on training sonar images, we prefer to use pixels in the range

bearing space instead. Given a point in one sonar image at

some range, R and bearing θ. We know that the point in

3D will lie along the elevation arc at the same range and

bearing as defined and at some arbitrary elevation angle, ϕ.

Since we do not know the elevation angle, the ambiguity is

along the elevation arc for ϕ <= ϕmax and ϕ >= ϕmin.

Now, the conversion of points in 3D Cartesian space to the

range bearing space is as seen in Equation 3.

P =





R

θ

φ



 = r





√

x2 + y2 + z2

arctan2(y, x)

arctan2(x,
√

x2 + y2)



 (3)

Assuming we have a feature point p in the first image, and

R1,2and t1,2are the known rotation and translation between

the coordinate frame of image 1 and image 2. The locus of

the same feature point in image 2, p
′

is calculated as seen

in Equation 5. This 3D feature locus can now be projected

into the polar sonar image plane as in Equation 6. Figure 3

visually describes the process of projecting the elevation arc

from the first frame onto the second image plane. The red

line is the epipolar contour we use for the loss function

described in a later section.

R1,2 =





r1
r2
r3



 , t1,2 = [ tx ty tz ]T (4)

Fig. 3: Sonar Epipolar Geometry: The elevation arc of a point in the first
image is transformed into the frame of the second image and then projected,
which creates an epipolar contour.
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y′
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′
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r′

θ′
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∥
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p

∥

∥

2
arctan2(y′, x′)

]
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B. Keypoint Detection

As CAPSNet is focused on training keypoint descriptors,

rather than provide keypoints itself, we need to provide the

initial keypoints for each frame. We propose two possible

approaches for this – The first of which utilizes traditional

keypoint detectors from AKAZE, ORB and SIFT. The secon

approach would be using a pre-trained network for learned

keypoint detectors like Magicpoint, the keypoint detector

from Superpoint. As the number of feature points in sonar

images vary a lot by scene and are generally limited, a

combination of them to reach the minimum keypoints per

frame might be necessary. It may also be necessary to train

Magicpoint through a synthetic shapes dataset with range-

bearing space sonar images.

C. Network highlights

We will use a CNN based encoder and decoder archi-

tecture with a differentiable matching layer similar to [13].

CAPSNet is based on the ResNet-50 architecture, truncated

at layer3. From here, they introduce their coarse-to-fine

architecture. Another convolution sets up the coarse repre-

sentation which is used to calculate the loss in the in encoder

representation and the decoder up-samples the coarser layer,

which helps create a finer representation. The architecture

is shown in Figure 4. Searching correspondences for all

points over the image is very computationally costly, hence

it makes most sense to sparsely sample the query points

for supervision. The coarse to fine architecture improves on

efficiency. At the coarse level, a correspondence distribution

is computed over all the locations. However, at the finer level

the distribution is only computed at the highest probability

location observed from the coarse map. The loss functions



(a) Differentiable Matching Layer

(b) Coarse to Fine module

Fig. 4: Network architecture highlights: a) For each feature point, its
correspondence location is represented as the expectation of a distribution
computed from the correlation between the feature descriptors. The asso-
ciated uncertainty also helps in reweighting training loss. (b) Searching
correspondence across the entire image is costly. The location of highest
probability at the coarse level is used to ascertain a local window at the fine
level. This allows for greater computational efficiency.

are imposed on both levels and the trained descriptors at

both levels are concatenated to give the final hierarchical

descriptor.

The distribution generated at the coarse and fine level is

achieved through the differential matching layer introduced

by CAPSNet. Such layers are common in tasks for object

tracking and image retrieval. The operating principle is as

follows. We take input features from two different branches

and produce a match score which shows the similarity in

the inputs. Each feature descriptor x1 in the first image’s

layer M1 is given a 2D distribution indicating the probability

of a location being the correspondence of x1in the second

image’s layer M2. They also use uncertainty obtained from

this distribution to reweight points which may not be there in

the second frame or be occluded, something which is highly

likely in sonar images.

D. Loss Functions

Like CAPSNet, we propose two loss functions, with

changes to make it more suitable for sonar images. The

two loss terms are namely the sonar-epipolar and loss sonar-

cyclic. While training we know the relative pose between

two image frames I1and I2, and as such we can calculate

the transformation between the two images. We can use

Equations 5 and 6 to determine the epipolar contour. The

predicted point, if predicted correctly, should lie on this

epipolar contour. Thus, we use this as a distance metric that

we can optimize over. The epipolar loss term, Lepipolar in

Equation 7 is defined as the shortest distance between the

predicted correspondence of a feature point x1in I1 and the

epipolar contour of x1 in the second image I2. In our imple-

mentation, we sample points along the elevation arc of the

first point in the first image and then transform and project

them on to the second image to create a discrete epipolar

contour of the sampled points. In the polar frame, the loss

is thus the minimum of the distance between the predicted

point and each point on the arc as seen in Equation 11.

The epipolar loss only checks for the predicted match to

lie on the estimated contour, and does not necessarily look

in the vicinity of the ground truth correspondence location.

To further constrain the system, a cyclic consistency loss is

utilized which aims to keep the forward-backward mapping

of the point to be close to itself. The weighted sum of the

losses Lepipolar and Lcyclic is our final loss function as seen

in Equation11. A point to note is that the distances found for

both the losses are in the range-bearing space. Due to nature

of sonar images, it is important for the network to learn this

distinction, and the combined loss terms in the range bearing

space help with this. A graphical representation of the losses

is seen in Figure 5.

Lepipolar(x1) = dist(h1→2(x1), ep_contour) (7)

Lcyclic(x1) = ∥h2→1(h1→2(x1)− x1∥2 (8)

L(I1,I2) =

n
∑

i=1

[Lepipolar(x
i
1) + λLcyclic(x

i
1)] (9)

Losscyclic((r1, θ1), (r2, θ2)) = r21+r22−2r1r2(cos(θ1−θ2))
(10)

Lossepipolar(p′proj(ϕ), r2, θ2) =

min
φ

(r(ϕ)2 + r22 − 2r(ϕ)r2(cos(θ(ϕ)− θ2))) (11)



Fig. 5: Loss functions: The yellow point x1 represents a feature point in
the first image. The red cross x̂2is the predicted point. Lep is the shortest
distance to the epipolar contour, or simply the epipolar loss. Lcy is the
cyclic loss to assert that the mapping of the feature point is close to its
original position.

(a) AKAZE Descriptor Matches

(b) Superpoint Descriptor Matches

(c) SONIC Descriptor Matches

Fig. 6: Qualitative Evaluation: (a) AKAZE descriptors with a symmetrical
match threshold of 0.8 is unable to provide reasonable matches. (b)
Superpoint descriptors with a symmetrical match threshold 0.8 give better
matches, but still unreliable. (c) SONIC descriptors with the same threshold
are able to give a large percentage of accurate matches.

(a) Expectation matching

(b) Expectation matching with a large variation in viewpoint

Fig. 7: Qualitative Evaluation: (a) Using expectation matching we see all
the matches made and see a very high number of them are accurate. (b) In
a much tougher scenario with a large variation in sensor poses, we see our
descriptors still providing good matches.

c

V. EVALUATION AND FUTURE WORK

A. Image Matching Results

To start our evaluation, we first see qualitative matching

results for two sonar image pairs and compare it to AKAZE

and Superpoint. These images are to simulate a loop closure

where the robot returns to a position it has This can be seen in

image In Figure 6 we see that with an aggressive threshold of

0.8 using the Lowe ratio test we see AKAZE descriptors are

not able to get reasonable matches. A pre-trained network of

Superpoint is able to do better but still not good enough. On

the other hand, our proposed descriptors are able to perform

much better.

A few more examples are also see in Figure 7. While our

current results are with a training set of 60,000 pairs, we see

markedly better performance. However, we aim to train on

a much larger dataset of 300,000 - 400,000 pairs to improve

the number of potential matches.

While qualitatively we show a marked improvment, quan-

titative proof is needed. In future work we will implement

a two-view acoustic bundle adjustment framework to re-

cover sensor pose information as presented by Westman et

al. [17]. This will allow a more robust evaluation metric. As

next steps, we aim to apply this network towards feature

based SLAM. Future iterations will focus on integrating

more imaging sonar makes, and also focus on cross-sonar

descriptors to enable relocalization in a map made by a

different imaging sonar.
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